Spaces:
Running
Running
File size: 68,812 Bytes
7e14e6f 1254c79 7e14e6f 03eddb7 4673e91 261f952 367d42f 08fb3e7 4ff6c1a a6e9232 d5eb93b de89832 7b14387 b552089 7b14387 d007853 b552089 d5eb93b 6036a45 25c8dd6 8a9c71f 9fe5f6d 6036a45 29f8d5d a25369d 7b14387 29f8d5d a7a5806 29f8d5d 5cd7bdb 29f8d5d 62b24fd 29f8d5d f602aaf 29f8d5d f602aaf 888b837 f602aaf a25369d f602aaf a25369d 29f8d5d a25369d e3e54f2 29f8d5d f602aaf 29f8d5d f602aaf e3e54f2 f602aaf e3e54f2 29f8d5d f602aaf 29f8d5d a25369d f602aaf 29f8d5d d007853 888b837 d007853 888b837 d007853 6daaf61 888b837 29f8d5d d007853 29f8d5d d007853 e3e54f2 d007853 29f8d5d cdaad51 e3e54f2 d007853 cdaad51 d007853 29f8d5d d007853 29f8d5d d007853 888b837 d007853 29f8d5d d007853 888b837 29f8d5d d007853 7844008 6036a45 8a9c71f 6036a45 3cdf7eb 8a9c71f 46fe2a8 8a9c71f a1bce75 8a9c71f a1bce75 8a9c71f cf42361 7a99adf cf42361 7a99adf cf42361 8a9c71f a1bce75 8a9c71f 46fe2a8 a1bce75 8a9c71f 027d010 a1bce75 4bd6649 e627fc2 4bd6649 e627fc2 46fe2a8 a1bce75 4bd6649 e627fc2 4bd6649 e627fc2 8a9c71f a1bce75 8a9c71f a1bce75 8a9c71f a1bce75 8a9c71f a1bce75 8a9c71f a1bce75 6036a45 a1bce75 6036a45 3cdf7eb 8a9c71f a1bce75 8a9c71f 6036a45 62b24fd 6036a45 cdaad51 6036a45 d5eb93b 6036a45 cdaad51 05922ea 6036a45 cdaad51 62b24fd 05922ea cdaad51 05922ea cdaad51 6036a45 cdaad51 913a17b 6036a45 cdaad51 de89832 cdaad51 913a17b cdaad51 913a17b 6036a45 cdaad51 913a17b 6036a45 cdaad51 59bee7f d5eb93b 05922ea d5eb93b 8a9c71f 6f1ee57 d5eb93b 6036a45 537a093 6036a45 d5eb93b 05922ea 6036a45 888b837 9bce4d4 6fe0751 9bce4d4 b9897b0 6fe0751 10f44f6 6036a45 6daaf61 6036a45 59bee7f 9bce4d4 6fe0751 54d4971 94c8f6d 5e55eb8 6fe0751 5e55eb8 6fe0751 54d4971 5e55eb8 6036a45 6fe0751 6036a45 6fe0751 6036a45 6fe0751 6036a45 6fe0751 537a093 3a7cc33 6036a45 6fe0751 3cdf7eb 480a85a 6036a45 29f8d5d 480a85a d029b07 480a85a d029b07 6fe0751 6daaf61 29f8d5d 6fe0751 d610f41 6036a45 6fe0751 6036a45 59bee7f 6036a45 8a9c71f 6fe0751 d5eb93b 59bee7f 7b14387 4ff6c1a f602aaf b9a262a 2e57f71 133976c 2e57f71 133976c 4cd2605 133976c 4cd2605 18fcf1b 2e57f71 4fa1abd 4cd2605 6da2a21 a87d6f0 38c5f49 a87d6f0 3949ea1 a87d6f0 e1603e5 6036a45 38c5f49 6036a45 38c5f49 6036a45 38c5f49 6036a45 4864457 6036a45 4864457 6036a45 1075b3f e1603e5 03eddb7 1bf0035 27bf06e 03eddb7 d007853 2541d3c 68cd5a6 8275073 2541d3c 1bf0035 8275073 2541d3c d007853 29f8d5d 03eddb7 2541d3c 03eddb7 fe6b622 29f8d5d a87d6f0 aebf0a2 cf42361 3cdf7eb 1f0f3cb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 3cdf7eb cf42361 1f0f3cb cf42361 1f0f3cb cf42361 3cdf7eb cf42361 9e97a7c 03eddb7 9e97a7c 03eddb7 9e97a7c 03eddb7 bc222e3 f602aaf 6fe0751 f2d6172 95deb7a e1603e5 f602aaf 95deb7a 9da9717 95deb7a 9da9717 95deb7a 9da9717 95deb7a f2d6172 95deb7a f2d6172 95deb7a f602aaf 95deb7a e1603e5 95deb7a f602aaf 6036a45 7e14e6f 6036a45 4e276c2 6f1ee57 6036a45 29f8d5d 27bf06e 59bee7f a25369d d007853 27bf06e 6036a45 229101e 6036a45 fa4f5f7 ec09b7b 464ff36 6fe0751 464ff36 ab0d1cf 464ff36 6036a45 55b2d76 45f1473 6036a45 45f1473 6036a45 7e14e6f 6036a45 5cd7bdb 6036a45 59bee7f 6036a45 59bee7f 6036a45 59bee7f 6036a45 7e14e6f 45f1473 6036a45 7b14387 6036a45 7b14387 6036a45 59bee7f 6036a45 59bee7f 6036a45 59bee7f 6036a45 59bee7f 6036a45 59bee7f 7b14387 6036a45 59bee7f 6036a45 55749a1 6036a45 59bee7f 6036a45 59bee7f 6036a45 7b14387 59bee7f 7b14387 e1603e5 261f952 7e14e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 |
import streamlit as st
import pandas as pd
import time
import matplotlib.pyplot as plt
from openpyxl.utils.dataframe import dataframe_to_rows
import io
from rapidfuzz import fuzz
import os
from openpyxl import load_workbook
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from io import StringIO, BytesIO
import sys
import contextlib
from langchain_openai import ChatOpenAI # Updated import
import pdfkit
from jinja2 import Template
import time
from tenacity import retry, stop_after_attempt, wait_exponential
from typing import Optional
import torch
from transformers import (
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
AutoModelForCausalLM # 4 Qwen
)
from threading import Event
import threading
from queue import Queue
from deep_translator import GoogleTranslator
from googletrans import Translator as LegacyTranslator
import plotly.graph_objects as go
from datetime import datetime
import plotly.express as px
class ProcessControl:
def __init__(self):
self.pause_event = Event()
self.stop_event = Event()
self.pause_event.set() # Start in non-paused state
def pause(self):
self.pause_event.clear()
def resume(self):
self.pause_event.set()
def stop(self):
self.stop_event.set()
self.pause_event.set() # Ensure not stuck in pause
def reset(self):
self.stop_event.clear()
self.pause_event.set()
def is_paused(self):
return not self.pause_event.is_set()
def is_stopped(self):
return self.stop_event.is_set()
def wait_if_paused(self):
self.pause_event.wait()
class FallbackLLMSystem:
def __init__(self):
"""Initialize fallback models for event detection and reasoning"""
try:
# Initialize MT5 model (multilingual T5)
self.model_name = "google/mt5-small"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
# Set device
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = self.model.to(self.device)
st.success(f"пока все в порядке: запущена MT5 model на = {self.device} =")
except Exception as e:
st.error(f"Ошибка запуска модели MT5: {str(e)}")
raise
def invoke(self, prompt_args):
"""Make the class compatible with LangChain by implementing invoke"""
try:
if isinstance(prompt_args, dict):
# Extract the prompt template result
template_result = prompt_args.get('template_result', '')
if not template_result:
# Try to construct from entity and news if available
entity = prompt_args.get('entity', '')
news = prompt_args.get('news', '')
template_result = f"Analyze news about {entity}: {news}"
else:
template_result = str(prompt_args)
# Process with MT5
inputs = self.tokenizer(
template_result,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.device)
outputs = self.model.generate(
**inputs,
max_length=200,
num_return_sequences=1,
do_sample=False,
pad_token_id=self.tokenizer.pad_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Return in a format compatible with LangChain
return type('Response', (), {'content': response})()
except Exception as e:
st.warning(f"MT5 generation error: {str(e)}")
# Return a default response on error
return type('Response', (), {
'content': 'Impact: Неопределенный эффект\nReasoning: Ошибка анализа'
})()
def __or__(self, other):
"""Implement the | operator for chain compatibility"""
if callable(other):
return lambda x: other(self(x))
return NotImplemented
def __rrshift__(self, other):
"""Implement the >> operator for chain compatibility"""
return self.__or__(other)
def __call__(self, prompt_args):
"""Make the class callable for chain compatibility"""
return self.invoke(prompt_args)
def detect_events(self, text: str, entity: str) -> tuple[str, str]:
"""
Detect events using MT5 with improved error handling and response parsing
Args:
text (str): The news text to analyze
entity (str): The company/entity name
Returns:
tuple[str, str]: (event_type, summary)
"""
# Initialize default return values
event_type = "Нет"
summary = ""
# Input validation
if not text or not entity or not isinstance(text, str) or not isinstance(entity, str):
return event_type, "Invalid input"
try:
# Clean and prepare input text
text = text.strip()
entity = entity.strip()
# Construct prompt with better formatting
prompt = f"""<s>Analyze the following news about {entity}:
Text: {text}
Task: Identify the main event type and provide a brief summary.
Event types:
1. Отчетность - Events related to financial reports, earnings, revenue, EBITDA
2. РЦБ - Events related to securities, bonds, stock market, defaults, restructuring
3. Суд - Events related to legal proceedings, lawsuits, arbitration
4. Нет - No significant events detected
Required output format:
Тип: [event type]
Краткое описание: [1-2 sentence summary]</s>"""
# Process with MT5
try:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512
).to(self.device)
outputs = self.model.generate(
**inputs,
max_length=300, # Increased for better summaries
num_return_sequences=1,
do_sample=False,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
no_repeat_ngram_size=3 # Prevent repetition
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except torch.cuda.OutOfMemoryError:
st.warning("GPU memory exceeded, falling back to CPU")
self.model = self.model.to('cpu')
inputs = inputs.to('cpu')
outputs = self.model.generate(
**inputs,
max_length=300,
num_return_sequences=1,
do_sample=False,
pad_token_id=self.tokenizer.pad_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
self.model = self.model.to(self.device) # Move back to GPU
# Enhanced response parsing
if "Тип:" in response and "Краткое описание:" in response:
try:
# Split and clean parts
parts = response.split("Краткое описание:")
type_part = parts[0].split("Тип:")[1].strip()
# Validate event type with fuzzy matching
valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"]
# Check for exact matches first
if type_part in valid_types:
event_type = type_part
else:
# Check keywords for each type
keywords = {
"Отчетность": ["отчет", "выручка", "прибыль", "ebitda", "финанс"],
"РЦБ": ["облигаци", "купон", "дефолт", "реструктуризац", "ценные бумаги"],
"Суд": ["суд", "иск", "арбитраж", "разбирательств"]
}
# Look for keywords in both type and summary
full_text = response.lower()
for event_category, category_keywords in keywords.items():
if any(keyword in full_text for keyword in category_keywords):
event_type = event_category
break
# Extract and clean summary
if len(parts) > 1:
summary = parts[1].strip()
# Ensure summary isn't too long
if len(summary) > 200:
summary = summary[:197] + "..."
# Add entity reference if missing
if entity.lower() not in summary.lower():
summary = f"Компания {entity}: {summary}"
except IndexError:
st.warning("Error parsing model response format")
return "Нет", "Error parsing response"
# Additional validation
if not summary or len(summary) < 5:
keywords = {
"Отчетность": "Обнаружена информация о финансовой отчетности",
"РЦБ": "Обнаружена информация о ценных бумагах",
"Суд": "Обнаружена информация о судебном разбирательстве",
"Нет": "Значимых событий не обнаружено"
}
summary = f"{keywords.get(event_type, 'Требуется дополнительный анализ')} ({entity})"
return event_type, summary
except Exception as e:
st.warning(f"Event detection error: {str(e)}")
# Try to provide more specific error information
if "CUDA" in str(e):
return "Нет", "GPU error - falling back to CPU needed"
elif "tokenizer" in str(e):
return "Нет", "Text processing error"
elif "model" in str(e):
return "Нет", "Model inference error"
else:
return "Нет", "Ошибка анализа"
def ensure_groq_llm():
"""Initialize Groq LLM for impact estimation"""
try:
if 'groq_key' not in st.secrets:
st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.")
return None
return ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
openai_api_key=st.secrets['groq_key'],
temperature=0.0
)
except Exception as e:
st.error(f"Error initializing Groq LLM: {str(e)}")
return None
def estimate_impact(llm, news_text, entity):
"""
Estimate impact using Groq LLM regardless of the main model choice.
Falls back to the provided LLM if Groq initialization fails.
"""
# Initialize default return values
impact = "Неопределенный эффект"
reasoning = "Не удалось получить обоснование"
try:
# Always try to use Groq first
groq_llm = ensure_groq_llm()
working_llm = groq_llm if groq_llm is not None else llm
template = """
You are a financial analyst. Analyze this news piece about {entity} and assess its potential impact.
News: {news}
Classify the impact into one of these categories:
1. "Значительный риск убытков" (Significant loss risk)
2. "Умеренный риск убытков" (Moderate loss risk)
3. "Незначительный риск убытков" (Minor loss risk)
4. "Вероятность прибыли" (Potential profit)
5. "Неопределенный эффект" (Uncertain effect)
Provide a brief, fact-based reasoning for your assessment.
Format your response exactly as:
Impact: [category]
Reasoning: [explanation in 2-3 sentences]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | working_llm
response = chain.invoke({"entity": entity, "news": news_text})
# Extract content from response
response_text = response.content if hasattr(response, 'content') else str(response)
if "Impact:" in response_text and "Reasoning:" in response_text:
impact_part, reasoning_part = response_text.split("Reasoning:")
impact_temp = impact_part.split("Impact:")[1].strip()
# Validate impact category
valid_impacts = [
"Значительный риск убытков",
"Умеренный риск убытков",
"Незначительный риск убытков",
"Вероятность прибыли",
"Неопределенный эффект"
]
if impact_temp in valid_impacts:
impact = impact_temp
reasoning = reasoning_part.strip()
except Exception as e:
st.warning(f"Error in impact estimation: {str(e)}")
return impact, reasoning
class QwenSystem:
def __init__(self):
"""Initialize Qwen 2.5 Coder model"""
try:
self.model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"
# Initialize model with auto settings
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype="auto",
device_map="auto"
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
st.success(f"запустил Qwen2.5 model")
except Exception as e:
st.error(f"ошибка запуска Qwen2.5: {str(e)}")
raise
def invoke(self, messages):
"""Process messages using Qwen's chat template"""
try:
# Prepare messages with system prompt
chat_messages = [
{"role": "system", "content": "You are wise financial analyst. You are a helpful assistant."}
]
chat_messages.extend(messages)
# Apply chat template
text = self.tokenizer.apply_chat_template(
chat_messages,
tokenize=False,
add_generation_prompt=True
)
# Prepare model inputs
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
# Generate response
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=512,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
# Extract new tokens
generated_ids = [
output_ids[len(input_ids):]
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# Decode response
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Return in ChatOpenAI-compatible format
return type('Response', (), {'content': response})()
except Exception as e:
st.warning(f"Qwen generation error: {str(e)}")
raise
class ProcessingUI:
def __init__(self):
if 'control' not in st.session_state:
st.session_state.control = ProcessControl()
# Initialize processing stats in session state if not exists
if 'processing_stats' not in st.session_state:
st.session_state.processing_stats = {
'start_time': time.time(),
'entities': {},
'events_timeline': [],
'negative_alerts': [],
'processing_speed': []
}
# Create main layout
self.setup_layout()
def setup_layout(self):
"""Setup the main UI layout with tabs and sections"""
# Control Panel
with st.container():
col1, col2, col3 = st.columns([2,2,1])
with col1:
if st.button(
"⏸️ Пауза" if not st.session_state.control.is_paused() else "▶️ Продолжить",
use_container_width=True
):
if st.session_state.control.is_paused():
st.session_state.control.resume()
else:
st.session_state.control.pause()
with col2:
if st.button("⏹️ Остановить", use_container_width=True):
st.session_state.control.stop()
with col3:
self.timer_display = st.empty()
# Progress Bar with custom styling
st.markdown("""
<style>
.stProgress > div > div > div > div {
background-image: linear-gradient(to right, #FF6B6B, #4ECDC4);
}
</style>""",
unsafe_allow_html=True
)
self.progress_bar = st.progress(0)
self.status = st.empty()
# Create tabs for different views
tab1, tab2, tab3, tab4 = st.tabs([
"📊 Основные метрики",
"🏢 По организациям",
"⚠️ Важные события",
"📈 Аналитика"
])
with tab1:
self.setup_main_metrics_tab()
with tab2:
self.setup_entity_tab()
with tab3:
self.setup_events_tab()
with tab4:
self.setup_analytics_tab()
def setup_entity_tab(self):
"""Setup the entity-wise analysis display"""
# Entity filter
self.entity_filter = st.multiselect(
"Фильтр по организациям:",
options=[], # Will be populated as entities are processed
default=None
)
# Entity metrics
self.entity_cols = st.columns([2,1,1,1])
self.entity_chart = st.empty()
self.entity_table = st.empty()
def setup_events_tab(self):
"""Setup the events timeline display"""
# Event type filter - store in session state
if 'event_filter' not in st.session_state:
st.session_state.event_filter = []
st.session_state.event_filter = st.multiselect(
"Тип события:",
options=["Отчетность", "РЦБ", "Суд"],
default=None,
key="event_filter_key"
)
self.timeline_container = st.container()
def _update_events_view(self, row, event_type):
"""Update events timeline"""
if event_type != 'Нет':
event_html = f"""
<div class='timeline-item' style='
border-left: 4px solid #2196F3;
margin: 10px 0;
padding: 10px;
background: #f5f5f5;
border-radius: 4px;
'>
<h4 style='color: #2196F3; margin: 0;'>{event_type}</h4>
<p><strong>{row['Объект']}</strong></p>
<p>{row['Заголовок']}</p>
<p style='font-size: 0.9em;'>{row['Выдержки из текста']}</p>
<small style='color: #666;'>{datetime.now().strftime('%H:%M:%S')}</small>
</div>
"""
with self.timeline_container:
st.markdown(event_html, unsafe_allow_html=True)
def setup_analytics_tab(self):
"""Setup the analytics display"""
# Create containers for analytics
self.speed_container = st.container()
with self.speed_container:
st.subheader("Скорость обработки")
self.speed_chart = st.empty()
self.sentiment_container = st.container()
with self.sentiment_container:
st.subheader("Распределение тональности")
self.sentiment_chart = st.empty()
self.correlation_container = st.container()
with self.correlation_container:
st.subheader("Корреляция между метриками")
self.correlation_chart = st.empty()
def update_stats(self, row, sentiment, event_type, processing_speed):
"""Update all statistics and displays"""
# Update session state stats
stats = st.session_state.processing_stats
entity = row['Объект']
# Update entity stats
if entity not in stats['entities']:
stats['entities'][entity] = {
'total': 0,
'negative': 0,
'events': 0,
'timeline': []
}
stats['entities'][entity]['total'] += 1
if sentiment == 'Negative':
stats['entities'][entity]['negative'] += 1
if event_type != 'Нет':
stats['entities'][entity]['events'] += 1
# Update processing speed
stats['processing_speed'].append(processing_speed)
# Update UI components
self._update_main_metrics(row, sentiment, event_type, processing_speed)
self._update_entity_view()
self._update_events_view(row, event_type)
self._update_analytics()
def _update_main_metrics(self, row, sentiment, event_type, speed):
"""Update main metrics tab"""
total = sum(e['total'] for e in st.session_state.processing_stats['entities'].values())
total_negative = sum(e['negative'] for e in st.session_state.processing_stats['entities'].values())
total_events = sum(e['events'] for e in st.session_state.processing_stats['entities'].values())
# Update metrics
self.total_processed.metric("Обработано", total)
self.negative_count.metric("Негативных", total_negative)
self.events_count.metric("Событий", total_events)
self.speed_metric.metric("Скорость", f"{speed:.1f} сообщ/сек")
# Update recent items
self._update_recent_items(row, sentiment, event_type)
def _update_recent_items(self, row, sentiment, event_type):
"""Update recent items display using Streamlit native components"""
if 'recent_items' not in st.session_state:
st.session_state.recent_items = []
# Add new item to the list
new_item = {
'entity': row['Объект'],
'headline': row['Заголовок'],
'sentiment': sentiment,
'event_type': event_type,
'time': datetime.now().strftime('%H:%M:%S')
}
# Update the list in session state
if not any(
item['entity'] == new_item['entity'] and
item['headline'] == new_item['headline']
for item in st.session_state.recent_items
):
st.session_state.recent_items.insert(0, new_item)
st.session_state.recent_items = st.session_state.recent_items[:10] # Keep last 10 items
# Prepare markdown for all items
all_items_markdown = ""
for item in st.session_state.recent_items:
if item['sentiment'] in ['Positive', 'Negative']:
sentiment_color = "🔴" if item['sentiment'] == 'Negative' else "🟢"
event_icon = "📅" if item['event_type'] != 'Нет' else ""
event_text = f" | Событие: {item['event_type']}" if item['event_type'] != 'Нет' else ""
all_items_markdown += f"""
{sentiment_color} **{item['entity']}** {event_icon}
{item['headline']}
*{item['sentiment']}*{event_text} | {item['time']}
---
"""
# Update container with all items at once
if all_items_markdown:
self.recent_items_container.markdown(all_items_markdown)
def setup_main_metrics_tab(self):
"""Setup the main metrics display with updated styling"""
# Create metrics containers
metrics_cols = st.columns(4)
self.total_processed = metrics_cols[0].empty()
self.negative_count = metrics_cols[1].empty()
self.events_count = metrics_cols[2].empty()
self.speed_metric = metrics_cols[3].empty()
# Create container for recent items
st.markdown("### негативные/позитивные")
self.recent_items_container = st.empty()
def _update_entity_view(self):
"""Update entity tab visualizations"""
stats = st.session_state.processing_stats['entities']
if not stats:
return
# Get filtered entities
filtered_entities = self.entity_filter or stats.keys()
# Create entity comparison chart using Plotly
df_entities = pd.DataFrame.from_dict(stats, orient='index')
df_entities = df_entities.loc[filtered_entities] # Apply filter
fig = go.Figure(data=[
go.Bar(
name='Всего',
x=df_entities.index,
y=df_entities['total'],
marker_color='#E0E0E0' # Light gray
),
go.Bar(
name='Негативные',
x=df_entities.index,
y=df_entities['negative'],
marker_color='#FF6B6B' # Red
),
go.Bar(
name='События',
x=df_entities.index,
y=df_entities['events'],
marker_color='#2196F3' # Blue
)
])
fig.update_layout(
barmode='group',
title='Статистика по организациям',
xaxis_title='Организация',
yaxis_title='Количество',
showlegend=True
)
self.entity_chart.plotly_chart(fig, use_container_width=True)
def _update_analytics(self):
"""Update analytics tab visualizations"""
stats = st.session_state.processing_stats
# Processing speed chart - showing last 20 measurements
speeds = stats['processing_speed'][-20:]
if speeds:
fig_speed = go.Figure(data=go.Scatter(
y=speeds,
mode='lines+markers',
name='Скорость',
line=dict(color='#4CAF50')
))
fig_speed.update_layout(
title='Скорость обработки',
yaxis_title='Сообщений в секунду',
showlegend=True
)
self.speed_chart.plotly_chart(fig_speed, use_container_width=True)
# Sentiment distribution pie chart
if stats['entities']:
total_negative = sum(e['negative'] for e in stats['entities'].values())
total_positive = sum(e['events'] for e in stats['entities'].values())
total_neutral = sum(e['total'] for e in stats['entities'].values()) - total_negative - total_positive
fig_sentiment = go.Figure(data=[go.Pie(
labels=['Негативные', 'Позитивные', 'Нейтральные'],
values=[total_negative, total_positive, total_neutral],
marker_colors=['#FF6B6B', '#4ECDC4', '#95A5A6']
)])
self.sentiment_chart.plotly_chart(fig_sentiment, use_container_width=True)
def update_progress(self, current, total):
"""Update progress bar, elapsed time and estimated time remaining"""
progress = current / total
self.progress_bar.progress(progress)
self.status.text(f"Обрабатываем {current} из {total} сообщений...")
# Calculate times
current_time = time.time()
elapsed = current_time - st.session_state.processing_stats['start_time']
# Calculate processing speed and estimated time remaining
if current > 0:
speed = current / elapsed # items per second
remaining_items = total - current
estimated_remaining = remaining_items / speed if speed > 0 else 0
time_display = (
f"⏱️ Прошло: {format_elapsed_time(elapsed)} | "
f"Осталось: {format_elapsed_time(estimated_remaining)}"
)
else:
time_display = f"⏱️ Прошло: {format_elapsed_time(elapsed)}"
self.timer_display.markdown(time_display)
class EventDetectionSystem:
def __init__(self):
try:
# Initialize models with specific labels
self.finbert = pipeline(
"text-classification",
model="ProsusAI/finbert",
return_all_scores=True
)
self.business_classifier = pipeline(
"text-classification",
model="yiyanghkust/finbert-tone",
return_all_scores=True
)
st.success("продолжается пока хорошо: BERT-модели запущены для детекции новостей")
except Exception as e:
st.error(f"Ошибка запуска BERT: {str(e)}")
raise
def detect_event_type(self, text, entity):
event_type = "Нет"
summary = ""
try:
# Ensure text is properly formatted
text = str(text).strip()
if not text:
return "Нет", "Empty text"
# Get predictions
finbert_scores = self.finbert(
text,
truncation=True,
max_length=512
)
business_scores = self.business_classifier(
text,
truncation=True,
max_length=512
)
# Get highest scoring predictions
finbert_pred = max(finbert_scores[0], key=lambda x: x['score'])
business_pred = max(business_scores[0], key=lambda x: x['score'])
# Map to event types with confidence threshold
confidence_threshold = 0.6
max_confidence = max(finbert_pred['score'], business_pred['score'])
if max_confidence >= confidence_threshold:
if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']):
event_type = "Отчетность"
summary = f"Финансовая отчетность (confidence: {max_confidence:.2f})"
elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт', 'реструктуризац']):
event_type = "РЦБ"
summary = f"Событие РЦБ (confidence: {max_confidence:.2f})"
elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']):
event_type = "Суд"
summary = f"Судебное разбирательство (confidence: {max_confidence:.2f})"
if event_type != "Нет":
summary += f"\nКомпания: {entity}"
return event_type, summary
except Exception as e:
st.warning(f"Event detection error: {str(e)}")
return "Нет", "Error in event detection"
class TranslationSystem:
def __init__(self):
"""Initialize translation system using Helsinki NLP model with fallback options"""
try:
self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
# Initialize fallback translator
self.fallback_translator = GoogleTranslator(source='ru', target='en')
self.legacy_translator = LegacyTranslator()
st.success("начинается все хорошо: запустил систему перевода")
except Exception as e:
st.error(f"Ошибка запуска перевода: {str(e)}")
raise
def _split_into_chunks(self, text: str, max_length: int = 450) -> list:
"""Split text into chunks while preserving word boundaries"""
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_length = len(word)
if current_length + word_length + 1 <= max_length:
current_chunk.append(word)
current_length += word_length + 1
else:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
current_length = word_length
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def _translate_chunk_with_retries(self, chunk: str, max_retries: int = 3) -> str:
"""Attempt translation with multiple fallback options"""
if not chunk or not chunk.strip():
return ""
for attempt in range(max_retries):
try:
# First try Helsinki NLP
result = self.translator(chunk, max_length=512)
if result and isinstance(result, list) and len(result) > 0:
translated = result[0].get('translation_text')
if translated and isinstance(translated, str):
return translated
# First fallback: Google Translator
translated = self.fallback_translator.translate(chunk)
if translated and isinstance(translated, str):
return translated
# Second fallback: Legacy Google Translator
translated = self.legacy_translator.translate(chunk, src='ru', dest='en').text
if translated and isinstance(translated, str):
return translated
except Exception as e:
if attempt == max_retries - 1:
st.warning(f"Попробовал перевести {max_retries} раз, не преуспел: {str(e)}")
time.sleep(1 * (attempt + 1)) # Exponential backoff
return chunk # Return original text if all translation attempts fail
def translate_text(self, text: str) -> str:
"""Translate text with robust error handling and validation"""
# Input validation
if pd.isna(text) or not isinstance(text, str):
return str(text) if pd.notna(text) else ""
text = str(text).strip()
if not text:
return ""
try:
# Split into manageable chunks
chunks = self._split_into_chunks(text)
translated_chunks = []
# Process each chunk with validation
for chunk in chunks:
if not chunk.strip():
continue
translated_chunk = self._translate_chunk_with_retries(chunk)
if translated_chunk: # Only add non-empty translations
translated_chunks.append(translated_chunk)
time.sleep(0.1) # Rate limiting
# Final validation of results
if not translated_chunks:
return text # Return original if no translations succeeded
result = ' '.join(translated_chunks)
return result if result.strip() else text
except Exception as e:
st.warning(f"Translation error: {str(e)}")
return text # Return original text on error
def process_file(uploaded_file, model_choice, translation_method=None):
df = None
processed_rows_df = pd.DataFrame()
last_time = time.time()
try:
# Initialize UI and control systems
ui = ProcessingUI()
translator = TranslationSystem()
event_detector = EventDetectionSystem()
# Load and prepare data
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
llm = init_langchain_llm(model_choice)
# Initialize Groq for impact estimation
groq_llm = ensure_groq_llm()
if groq_llm is None:
st.warning("Failed to initialize Groq LLM for impact estimation. Using fallback model.")
# Initialize all required columns at the start
required_columns = {
'Объект': '',
'Заголовок': '',
'Выдержки из текста': '',
'Translated': '',
'Sentiment': 'Neutral',
'Impact': 'Неопределенный эффект',
'Reasoning': 'Не проанализировано',
'Event_Type': 'Нет',
'Event_Summary': ''
}
# Ensure all required columns exist in DataFrame
for col, default_value in required_columns.items():
if col not in df.columns:
df[col] = default_value
# Create processed_rows_df with all columns from original df and required columns
all_columns = list(set(list(df.columns) + list(required_columns.keys())))
processed_rows_df = pd.DataFrame(columns=all_columns)
# Deduplication
original_count = len(df)
df = df.groupby('Объект', group_keys=False).apply(
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 55)
).reset_index(drop=True)
st.write(f"Из {original_count} сообщений удалено {original_count - len(df)} дубликатов.")
# Process rows
total_rows = len(df)
processed_rows = 0
grlm = init_langchain_llm("Groq (llama-3.1-70b)")
for idx, row in df.iterrows():
if st.session_state.control.is_stopped():
st.warning("Обработку остановили")
if not processed_rows_df.empty:
try:
# Create the output files for each sheet
monitoring_df = processed_rows_df[processed_rows_df['Event_Type'] != 'Нет'].copy()
svodka_df = processed_rows_df.groupby('Объект').agg({
'Объект': 'first',
'Sentiment': lambda x: sum(x == 'Negative'),
'Event_Type': lambda x: sum(x != 'Нет')
}).reset_index()
# Prepare final DataFrame for file creation
result_df = pd.DataFrame()
result_df['Мониторинг'] = monitoring_df.to_dict('records')
result_df['Сводка'] = svodka_df.to_dict('records')
result_df['Публикации'] = processed_rows_df.to_dict('records')
output = create_output_file(result_df, uploaded_file)
if output is not None:
st.download_button(
label=f"📊 Скачать результат ({processed_rows} из {total_rows} строк)",
data=output,
file_name="partial_analysis.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key="partial_download"
)
except Exception as e:
st.error(f"Ошибка при создании файла: {str(e)}")
return processed_rows_df
st.session_state.control.wait_if_paused()
if st.session_state.control.is_paused():
continue
try:
# Copy original row data
new_row = row.copy()
# Translation
translated_text = translator.translate_text(row['Выдержки из текста'])
new_row['Translated'] = translated_text
# Sentiment analysis
sentiment = analyze_sentiment(translated_text)
new_row['Sentiment'] = sentiment
# Event detection
event_type, event_summary = event_detector.detect_event_type(
row['Выдержки из текста'],
row['Объект']
)
new_row['Event_Type'] = event_type
new_row['Event_Summary'] = event_summary
# Handle negative sentiment
if sentiment == "Negative":
try:
if translated_text and len(translated_text.strip()) > 0:
impact, reasoning = estimate_impact(
groq_llm if groq_llm is not None else llm,
translated_text,
row['Объект']
)
new_row['Impact'] = impact
new_row['Reasoning'] = translate_reasoning_to_russian(grlm, reasoning)
except Exception as e:
new_row['Impact'] = "Неопределенный эффект"
new_row['Reasoning'] = "Ошибка анализа"
# Add processed row to DataFrame
processed_rows_df = pd.concat([processed_rows_df, pd.DataFrame([new_row])], ignore_index=True)
# Calculate processing speed
current_time = time.time()
processing_speed = 1.0 / (current_time - last_time) if (current_time - last_time) > 0 else 0
last_time = current_time
# Update UI stats
ui.update_stats(
row=new_row,
sentiment=sentiment,
event_type=event_type,
processing_speed=processing_speed
)
# Update progress
processed_rows += 1
ui.update_progress(processed_rows, total_rows)
except Exception as e:
st.warning(f"Ошибка в обработке ряда {idx + 1}: {str(e)}")
continue
return processed_rows_df
except Exception as e:
st.error(f"Ошибка в обработке файла: {str(e)}")
return None
def create_download_section(excel_data, pdf_data):
st.markdown("""
<div class="download-container">
<div class="download-header">📥 Результаты анализа доступны для скачивания:</div>
</div>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
if excel_data is not None:
st.download_button(
label="📊 Скачать Excel отчет",
data=excel_data,
file_name="результат_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key="excel_download"
)
else:
st.error("Ошибка при создании Excel файла")
def display_sentiment_results(row, sentiment, impact=None, reasoning=None):
if sentiment == "Negative":
st.markdown(f"""
<div style='color: red; font-weight: bold;'>
Объект: {row['Объект']}<br>
Новость: {row['Заголовок']}<br>
Тональность: {sentiment}<br>
{"Эффект: " + impact + "<br>" if impact else ""}
{"Обоснование: " + reasoning + "<br>" if reasoning else ""}
</div>
""", unsafe_allow_html=True)
elif sentiment == "Positive":
st.markdown(f"""
<div style='color: green; font-weight: bold;'>
Объект: {row['Объект']}<br>
Новость: {row['Заголовок']}<br>
Тональность: {sentiment}<br>
</div>
""", unsafe_allow_html=True)
else:
st.write(f"Объект: {row['Объект']}")
st.write(f"Новость: {row['Заголовок']}")
st.write(f"Тональность: {sentiment}")
st.write("---")
# Initialize sentiment analyzers
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
def get_mapped_sentiment(result):
label = result['label'].lower()
if label in ["positive", "label_2", "pos", "pos_label"]:
return "Positive"
elif label in ["negative", "label_0", "neg", "neg_label"]:
return "Negative"
return "Neutral"
def analyze_sentiment(text):
try:
finbert_result = get_mapped_sentiment(
finbert(text, truncation=True, max_length=512)[0]
)
roberta_result = get_mapped_sentiment(
roberta(text, truncation=True, max_length=512)[0]
)
finbert_tone_result = get_mapped_sentiment(
finbert_tone(text, truncation=True, max_length=512)[0]
)
# Count occurrences of each sentiment
sentiments = [finbert_result, roberta_result, finbert_tone_result]
sentiment_counts = {s: sentiments.count(s) for s in set(sentiments)}
# Return sentiment if at least two models agree
for sentiment, count in sentiment_counts.items():
if count >= 2:
return sentiment
# Default to Neutral if no agreement
return "Neutral"
except Exception as e:
st.warning(f"Sentiment analysis error: {str(e)}")
return "Neutral"
def fuzzy_deduplicate(df, column, threshold=50):
seen_texts = []
indices_to_keep = []
for i, text in enumerate(df[column]):
if pd.isna(text):
indices_to_keep.append(i)
continue
text = str(text)
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
seen_texts.append(text)
indices_to_keep.append(i)
return df.iloc[indices_to_keep]
def init_langchain_llm(model_choice):
try:
if model_choice == "Qwen2.5-Coder":
st.info("Loading Qwen2.5-Coder model. только GPU!")
return QwenSystem()
elif model_choice == "Groq (llama-3.1-70b)":
if 'groq_key' not in st.secrets:
st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.")
st.stop()
return ChatOpenAI(
base_url="https://api.groq.com/openai/v1",
model="llama-3.1-70b-versatile",
openai_api_key=st.secrets['groq_key'],
temperature=0.0
)
elif model_choice == "ChatGPT-4-mini":
if 'openai_key' not in st.secrets:
st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.")
st.stop()
return ChatOpenAI(
model="gpt-4",
openai_api_key=st.secrets['openai_key'],
temperature=0.0
)
elif model_choice == "Local-MT5":
return FallbackLLMSystem()
except Exception as e:
st.error(f"Error initializing the LLM: {str(e)}")
st.stop()
def estimate_impact(llm, news_text, entity):
"""
Estimate impact using Groq LLM with improved error handling and validation.
"""
try:
# Input validation
if not news_text or not entity:
return "Неопределенный эффект", "Недостаточно данных для анализа"
# Clean up inputs
news_text = str(news_text).strip()
entity = str(entity).strip()
# Always try to use Groq first
working_llm = ensure_groq_llm() if 'groq_key' in st.secrets else llm
template = """
You are a financial analyst tasked with assessing the impact of news on a company.
Company: {entity}
News Text: {news}
Based on the news content, strictly classify the potential impact into ONE of these categories:
1. "Значительный риск убытков" - For severe negative events like bankruptcy, major legal issues, significant market loss
2. "Умеренный риск убытков" - For moderate negative events like minor legal issues, temporary setbacks
3. "Незначительный риск убытков" - For minor negative events with limited impact
4. "Вероятность прибыли" - For positive events that could lead to profit or growth
5. "Неопределенный эффект" - Only if impact cannot be determined from the information
FORMAT YOUR RESPONSE EXACTLY AS:
Impact: [category name exactly as shown above]
Reasoning: [2-3 concise sentences explaining your choice]
"""
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
chain = prompt | working_llm
# Make the API call
response = chain.invoke({
"entity": entity,
"news": news_text
})
# Parse response
response_text = response.content if hasattr(response, 'content') else str(response)
# Extract impact and reasoning
impact = "Неопределенный эффект" # Default
reasoning = "Не удалось определить влияние" # Default
if "Impact:" in response_text and "Reasoning:" in response_text:
parts = response_text.split("Reasoning:")
impact_part = parts[0].split("Impact:")[1].strip()
reasoning = parts[1].strip()
# Validate impact category with fuzzy matching
valid_impacts = [
"Значительный риск убытков",
"Умеренный риск убытков",
"Незначительный риск убытков",
"Вероятность прибыли",
"Неопределенный эффект"
]
# Use fuzzy matching
best_match = None
best_score = 0
for valid_impact in valid_impacts:
score = fuzz.ratio(impact_part.lower(), valid_impact.lower())
if score > best_score and score > 80: # 80% similarity threshold
best_score = score
best_match = valid_impact
if best_match:
impact = best_match
return impact, reasoning
except Exception as e:
st.warning(f"Impact estimation error: {str(e)}")
if 'rate limit' in str(e).lower():
st.warning("Rate limit reached. Using fallback analysis.")
return "Неопределенный эффект", "Ошибка при анализе влияния"
def format_elapsed_time(seconds):
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
time_parts = []
if hours > 0:
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
if minutes > 0:
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
if seconds > 0 or not time_parts:
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
return " ".join(time_parts)
def generate_sentiment_visualization(df):
negative_df = df[df['Sentiment'] == 'Negative']
if negative_df.empty:
st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.")
entity_counts = df['Объект'].value_counts()
else:
entity_counts = negative_df['Объект'].value_counts()
if len(entity_counts) == 0:
st.warning("Нет данных для визуализации.")
return None
fig, ax = plt.subplots(figsize=(12, max(6, len(entity_counts) * 0.5)))
entity_counts.plot(kind='barh', ax=ax)
ax.set_title('Количество негативных упоминаний по объектам')
ax.set_xlabel('Количество упоминаний')
plt.tight_layout()
return fig
def create_analysis_data(df):
analysis_data = []
for _, row in df.iterrows():
if row['Sentiment'] == 'Negative':
analysis_data.append([
row['Объект'],
row['Заголовок'],
'РИСК УБЫТКА',
row['Impact'],
row['Reasoning'],
row['Выдержки из текста']
])
return pd.DataFrame(analysis_data, columns=[
'Объект',
'Заголовок',
'Признак',
'Оценка влияния',
'Обоснование',
'Текст сообщения'
])
def translate_reasoning_to_russian(llm, text):
"""Modified to handle both standard LLMs and FallbackLLMSystem"""
if isinstance(llm, FallbackLLMSystem):
# Direct translation using MT5
response = llm.invoke({
'template_result': f"Translate to Russian: {text}"
})
return response.content.strip()
else:
# Original LangChain approach
template = """
Translate this English explanation to Russian, maintaining a formal business style:
"{text}"
Your response should contain only the Russian translation.
"""
prompt = PromptTemplate(template=template, input_variables=["text"])
chain = prompt | llm
response = chain.invoke({"text": text})
# Handle different response types
if hasattr(response, 'content'):
return response.content.strip()
elif isinstance(response, str):
return response.strip()
else:
return str(response).strip()
def create_output_file(df, uploaded_file):
"""Create Excel file with multiple sheets from processed DataFrame"""
try:
wb = load_workbook("sample_file.xlsx")
# 1. Update 'Публикации' sheet
ws = wb['Публикации']
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# 2. Update 'Мониторинг' sheet with events
ws = wb['Мониторинг']
row_idx = 4
events_df = df[df['Event_Type'] != 'Нет'].copy()
for _, row in events_df.iterrows():
ws.cell(row=row_idx, column=5, value=row['Объект'])
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
ws.cell(row=row_idx, column=7, value=row['Event_Type'])
ws.cell(row=row_idx, column=8, value=row['Event_Summary'])
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
row_idx += 1
# 3. Update 'Сводка' sheet
ws = wb['Сводка']
unique_entities = df['Объект'].unique()
entity_stats = []
for entity in unique_entities:
entity_df = df[df['Объект'] == entity]
stats = {
'Объект': entity,
'Всего': len(entity_df),
'Негативные': len(entity_df[entity_df['Sentiment'] == 'Negative']),
'Позитивные': len(entity_df[entity_df['Sentiment'] == 'Positive'])
}
# Get most severe impact for entity
negative_df = entity_df[entity_df['Sentiment'] == 'Negative']
if len(negative_df) > 0:
impacts = negative_df['Impact'].dropna()
if len(impacts) > 0:
stats['Impact'] = impacts.iloc[0]
else:
stats['Impact'] = 'Неопределенный эффект'
else:
stats['Impact'] = 'Неопределенный эффект'
entity_stats.append(stats)
# Sort by number of negative mentions
entity_stats = sorted(entity_stats, key=lambda x: x['Негативные'], reverse=True)
# Write to sheet
row_idx = 4 # Starting row in Сводка sheet
for stats in entity_stats:
ws.cell(row=row_idx, column=5, value=stats['Объект'])
ws.cell(row=row_idx, column=6, value=stats['Всего'])
ws.cell(row=row_idx, column=7, value=stats['Негативные'])
ws.cell(row=row_idx, column=8, value=stats['Позитивные'])
ws.cell(row=row_idx, column=9, value=stats['Impact'])
row_idx += 1
# 4. Update 'Значимые' sheet
ws = wb['Значимые']
row_idx = 3
sentiment_df = df[df['Sentiment'].isin(['Negative', 'Positive'])].copy()
for _, row in sentiment_df.iterrows():
ws.cell(row=row_idx, column=3, value=row['Объект'])
ws.cell(row=row_idx, column=4, value='релевантно')
ws.cell(row=row_idx, column=5, value=row['Sentiment'])
ws.cell(row=row_idx, column=6, value=row.get('Impact', '-'))
ws.cell(row=row_idx, column=7, value=row['Заголовок'])
ws.cell(row=row_idx, column=8, value=row['Выдержки из текста'])
row_idx += 1
# 5. Update 'Анализ' sheet
ws = wb['Анализ']
row_idx = 4
negative_df = df[df['Sentiment'] == 'Negative'].copy()
for _, row in negative_df.iterrows():
ws.cell(row=row_idx, column=5, value=row['Объект'])
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
ws.cell(row=row_idx, column=7, value="Риск убытка")
ws.cell(row=row_idx, column=8, value=row.get('Reasoning', '-'))
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
row_idx += 1
# 6. Update 'Тех.приложение' sheet
if 'Тех.приложение' not in wb.sheetnames:
wb.create_sheet('Тех.приложение')
ws = wb['Тех.приложение']
tech_cols = ['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']
tech_df = df[tech_cols].copy()
for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1):
for c_idx, value in enumerate(row, start=1):
ws.cell(row=r_idx, column=c_idx, value=value)
# Save workbook
output = io.BytesIO()
wb.save(output)
output.seek(0)
return output
except Exception as e:
st.error(f"Error creating output file: {str(e)}")
st.error(f"DataFrame shape: {df.shape}")
st.error(f"Available columns: {df.columns.tolist()}")
return None
def main():
st.set_page_config(layout="wide")
with st.sidebar:
st.title("::: AI-анализ мониторинга новостей (v.4.19+):::")
st.subheader("по материалам СКАН-ИНТЕРФАКС")
model_choice = st.radio(
"Выберите модель для анализа:",
["Local-MT5", "Qwen2.5-Coder", "Groq (llama-3.1-70b)", "ChatGPT-4-mini"],
key="model_selector",
help="Выберите модель для анализа новостей"
)
uploaded_file = st.file_uploader(
"Выбирайте Excel-файл",
type="xlsx",
key="file_uploader"
)
st.markdown(
"""
Использованы технологии:
- Анализ естественного языка с помощью предтренированных нейросетей **BERT**
- Дополнительная обработка при помощи больших языковых моделей (**LLM**)
- Фреймворк **LangChain** для оркестрации
""",
unsafe_allow_html=True
)
st.markdown(
"""
<style>
.signature {
position: fixed;
right: 12px;
down: 12px;
font-size: 14px;
color: #FF0000;
opacity: 0.9;
z-index: 999;
}
</style>
<div class="signature">denis.pokrovsky.npff</div>
""",
unsafe_allow_html=True
)
# Main content area
st.title("Анализ мониторинга новостей")
# Initialize session state
if 'processed_df' not in st.session_state:
st.session_state.processed_df = None
# Create display areas
col1, col2 = st.columns([2, 1])
with col1:
# Area for real-time updates
st.subheader("Что найдено, показываю:")
st.markdown("""
<style>
.stProgress .st-bo {
background-color: #f0f2f6;
}
.negative-alert {
background-color: #ffebee;
border-left: 5px solid #f44336;
padding: 10px;
margin: 5px 0;
}
.event-alert {
background-color: #e3f2fd;
border-left: 5px solid #2196f3;
padding: 10px;
margin: 5px 0;
}
</style>
""", unsafe_allow_html=True)
with col2:
# Area for statistics
st.subheader("Статистика")
if st.session_state.processed_df is not None:
st.metric("Всего статей", len(st.session_state.processed_df))
st.metric("Из них негативных",
len(st.session_state.processed_df[
st.session_state.processed_df['Sentiment'] == 'Negative'
])
)
st.metric("Событий обнаружено",
len(st.session_state.processed_df[
st.session_state.processed_df['Event_Type'] != 'Нет'
])
)
if uploaded_file is not None and st.session_state.processed_df is None:
start_time = time.time()
try:
st.session_state.processed_df = process_file(
uploaded_file,
model_choice,
translation_method='auto'
)
if st.session_state.processed_df is not None:
end_time = time.time()
elapsed_time = format_elapsed_time(end_time - start_time)
# Show results
st.subheader("Итого по результатам")
# Display statistics
stats_cols = st.columns(4)
with stats_cols[0]:
st.metric("Всего обработано", len(st.session_state.processed_df))
with stats_cols[1]:
st.metric("Негативных",
len(st.session_state.processed_df[
st.session_state.processed_df['Sentiment'] == 'Negative'
])
)
with stats_cols[2]:
st.metric("Событий обнаружено",
len(st.session_state.processed_df[
st.session_state.processed_df['Event_Type'] != 'Нет'
])
)
with stats_cols[3]:
st.metric("Время обработки составило", elapsed_time)
# Show data previews
with st.expander("📊 Предпросмотр данных", expanded=True):
preview_cols = ['Объект', 'Заголовок', 'Sentiment', 'Event_Type']
st.dataframe(
st.session_state.processed_df[preview_cols],
use_container_width=True
)
# Create downloadable report
output = create_output_file(
st.session_state.processed_df,
uploaded_file
)
st.download_button(
label="📥 Полный отчет - загрузить",
data=output,
file_name="результаты_анализа.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key='download_button'
)
except Exception as e:
st.error(f"Ошибочка в обработке файла: {str(e)}")
st.session_state.processed_df = None
if __name__ == "__main__":
main() |