Spaces:
Running
Running
Commit
·
f602aaf
1
Parent(s):
0a20075
3.60
Browse files
app.py
CHANGED
@@ -71,41 +71,35 @@ class FallbackLLMSystem:
|
|
71 |
# Initialize MT5 model (multilingual T5)
|
72 |
self.model_name = "google/mt5-small"
|
73 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
74 |
-
self.model =
|
75 |
|
76 |
# Set device
|
77 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
78 |
self.model = self.model.to(self.device)
|
79 |
|
80 |
-
st.success(f"
|
81 |
|
82 |
except Exception as e:
|
83 |
st.error(f"Error initializing MT5: {str(e)}")
|
84 |
raise
|
85 |
|
86 |
-
def
|
87 |
-
"""
|
88 |
-
# Initialize default return values
|
89 |
-
event_type = "Нет"
|
90 |
-
summary = ""
|
91 |
-
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
|
103 |
-
|
104 |
-
Тип: [type]
|
105 |
-
Краткое описание: [summary]</s>"""
|
106 |
-
|
107 |
inputs = self.tokenizer(
|
108 |
-
|
109 |
return_tensors="pt",
|
110 |
padding=True,
|
111 |
truncation=True,
|
@@ -122,25 +116,174 @@ class FallbackLLMSystem:
|
|
122 |
|
123 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
124 |
|
125 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
if "Тип:" in response and "Краткое описание:" in response:
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
132 |
valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"]
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
if len(parts) > 1:
|
137 |
-
summary = parts[1].strip()
|
138 |
-
|
139 |
return event_type, summary
|
140 |
-
|
141 |
except Exception as e:
|
142 |
st.warning(f"Event detection error: {str(e)}")
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
def ensure_groq_llm():
|
146 |
"""Initialize Groq LLM for impact estimation"""
|
@@ -351,7 +494,7 @@ class EventDetectionSystem:
|
|
351 |
model="yiyanghkust/finbert-tone",
|
352 |
return_all_scores=True
|
353 |
)
|
354 |
-
st.success("BERT-модели запущены для детекции новостей")
|
355 |
except Exception as e:
|
356 |
st.error(f"Ошибка запуска BERT: {str(e)}")
|
357 |
raise
|
@@ -414,7 +557,7 @@ class TranslationSystem:
|
|
414 |
# Initialize fallback translator
|
415 |
self.fallback_translator = GoogleTranslator(source='ru', target='en')
|
416 |
self.legacy_translator = LegacyTranslator()
|
417 |
-
st.success("
|
418 |
except Exception as e:
|
419 |
st.error(f"Ошибка запуска перевода: {str(e)}")
|
420 |
raise
|
@@ -641,24 +784,7 @@ def process_file(uploaded_file, model_choice, translation_method=None):
|
|
641 |
st.error(f"Ошибка в обработке файла: {str(e)}")
|
642 |
return None
|
643 |
|
644 |
-
|
645 |
-
template = """
|
646 |
-
Translate this English explanation to Russian, maintaining a formal business style:
|
647 |
-
"{text}"
|
648 |
-
|
649 |
-
Your response should contain only the Russian translation.
|
650 |
-
"""
|
651 |
-
prompt = PromptTemplate(template=template, input_variables=["text"])
|
652 |
-
chain = prompt | llm | RunnablePassthrough()
|
653 |
-
response = chain.invoke({"text": text})
|
654 |
-
|
655 |
-
# Handle different response types
|
656 |
-
if hasattr(response, 'content'):
|
657 |
-
return response.content.strip()
|
658 |
-
elif isinstance(response, str):
|
659 |
-
return response.strip()
|
660 |
-
else:
|
661 |
-
return str(response).strip()
|
662 |
|
663 |
|
664 |
def create_download_section(excel_data, pdf_data):
|
@@ -905,104 +1031,76 @@ def create_analysis_data(df):
|
|
905 |
'Текст сообщения'
|
906 |
])
|
907 |
|
908 |
-
def
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I
|
922 |
-
row_idx += 1
|
923 |
-
|
924 |
-
# Sort entities by number of negative publications
|
925 |
-
entity_stats = pd.DataFrame({
|
926 |
-
'Объект': df['Объект'].unique(),
|
927 |
-
'Всего': df.groupby('Объект').size(),
|
928 |
-
'Негативные': df[df['Sentiment'] == 'Negative'].groupby('Объект').size().fillna(0).astype(int),
|
929 |
-
'Позитивные': df[df['Sentiment'] == 'Positive'].groupby('Объект').size().fillna(0).astype(int)
|
930 |
-
}).sort_values('Негативные', ascending=False)
|
931 |
-
|
932 |
-
# Calculate most negative impact for each entity
|
933 |
-
entity_impacts = {}
|
934 |
-
for entity in df['Объект'].unique():
|
935 |
-
entity_df = df[df['Объект'] == entity]
|
936 |
-
negative_impacts = entity_df[entity_df['Sentiment'] == 'Negative']['Impact']
|
937 |
-
entity_impacts[entity] = negative_impacts.iloc[0] if len(negative_impacts) > 0 else 'Неопределенный эффект'
|
938 |
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
ws.cell(row=idx, column=7, value=row['Негативные']) # Column G
|
945 |
-
ws.cell(row=idx, column=8, value=row['Позитивные']) # Column H
|
946 |
-
ws.cell(row=idx, column=9, value=entity_impacts[entity]) # Column I
|
947 |
|
948 |
-
#
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
row_idx += 1
|
960 |
|
961 |
-
#
|
962 |
-
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
963 |
-
ws = wb['Публикации']
|
964 |
-
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
|
965 |
-
for c_idx, value in enumerate(row, start=1):
|
966 |
-
ws.cell(row=r_idx, column=c_idx, value=value)
|
967 |
|
968 |
-
# Update 'Анализ' sheet
|
969 |
ws = wb['Анализ']
|
970 |
row_idx = 4
|
971 |
for _, row in df[df['Sentiment'] == 'Negative'].iterrows():
|
972 |
-
ws.cell(row=row_idx, column=5, value=row['Объект'])
|
973 |
-
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
|
974 |
-
ws.cell(row=row_idx, column=7, value="Риск убытка")
|
975 |
|
976 |
-
#
|
977 |
if pd.notna(row['Reasoning']):
|
978 |
-
|
979 |
-
|
|
|
|
|
|
|
|
|
980 |
|
981 |
-
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
|
982 |
row_idx += 1
|
983 |
|
984 |
-
#
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
ws.cell(row=r_idx, column=c_idx, value=value)
|
992 |
-
|
993 |
except Exception as e:
|
994 |
st.warning(f"Ошибка при создании выходного файла: {str(e)}")
|
995 |
-
|
996 |
-
output = io.BytesIO()
|
997 |
-
wb.save(output)
|
998 |
-
output.seek(0)
|
999 |
-
return output
|
1000 |
|
1001 |
def main():
|
1002 |
st.set_page_config(layout="wide")
|
1003 |
|
1004 |
with st.sidebar:
|
1005 |
-
st.title("::: AI-анализ мониторинга новостей (v.3.
|
1006 |
st.subheader("по материалам СКАН-ИНТЕРФАКС")
|
1007 |
|
1008 |
model_choice = st.radio(
|
|
|
71 |
# Initialize MT5 model (multilingual T5)
|
72 |
self.model_name = "google/mt5-small"
|
73 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
74 |
+
self.model = AutoModelForSeq2SeqM.from_pretrained(self.model_name)
|
75 |
|
76 |
# Set device
|
77 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
78 |
self.model = self.model.to(self.device)
|
79 |
|
80 |
+
st.success(f"Successfully initialized MT5 model on {self.device}")
|
81 |
|
82 |
except Exception as e:
|
83 |
st.error(f"Error initializing MT5: {str(e)}")
|
84 |
raise
|
85 |
|
86 |
+
def invoke(self, prompt_args):
|
87 |
+
"""Make the class compatible with LangChain by implementing invoke"""
|
|
|
|
|
|
|
|
|
88 |
try:
|
89 |
+
if isinstance(prompt_args, dict):
|
90 |
+
# Extract the prompt template result
|
91 |
+
template_result = prompt_args.get('template_result', '')
|
92 |
+
if not template_result:
|
93 |
+
# Try to construct from entity and news if available
|
94 |
+
entity = prompt_args.get('entity', '')
|
95 |
+
news = prompt_args.get('news', '')
|
96 |
+
template_result = f"Analyze news about {entity}: {news}"
|
97 |
+
else:
|
98 |
+
template_result = str(prompt_args)
|
99 |
|
100 |
+
# Process with MT5
|
|
|
|
|
|
|
101 |
inputs = self.tokenizer(
|
102 |
+
template_result,
|
103 |
return_tensors="pt",
|
104 |
padding=True,
|
105 |
truncation=True,
|
|
|
116 |
|
117 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
118 |
|
119 |
+
# Return in a format compatible with LangChain
|
120 |
+
return type('Response', (), {'content': response})()
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
st.warning(f"MT5 generation error: {str(e)}")
|
124 |
+
# Return a default response on error
|
125 |
+
return type('Response', (), {
|
126 |
+
'content': 'Impact: Неопределенный эффект\nReasoning: Ошибка анализа'
|
127 |
+
})()
|
128 |
+
|
129 |
+
def __or__(self, other):
|
130 |
+
"""Implement the | operator for chain compatibility"""
|
131 |
+
if callable(other):
|
132 |
+
return lambda x: other(self(x))
|
133 |
+
return NotImplemented
|
134 |
+
|
135 |
+
def __rrshift__(self, other):
|
136 |
+
"""Implement the >> operator for chain compatibility"""
|
137 |
+
return self.__or__(other)
|
138 |
+
|
139 |
+
def __call__(self, prompt_args):
|
140 |
+
"""Make the class callable for chain compatibility"""
|
141 |
+
return self.invoke(prompt_args)
|
142 |
+
|
143 |
+
def detect_events(self, text: str, entity: str) -> tuple[str, str]:
|
144 |
+
"""
|
145 |
+
Detect events using MT5 with improved error handling and response parsing
|
146 |
+
|
147 |
+
Args:
|
148 |
+
text (str): The news text to analyze
|
149 |
+
entity (str): The company/entity name
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
tuple[str, str]: (event_type, summary)
|
153 |
+
"""
|
154 |
+
# Initialize default return values
|
155 |
+
event_type = "Нет"
|
156 |
+
summary = ""
|
157 |
+
|
158 |
+
# Input validation
|
159 |
+
if not text or not entity or not isinstance(text, str) or not isinstance(entity, str):
|
160 |
+
return event_type, "Invalid input"
|
161 |
+
|
162 |
+
try:
|
163 |
+
# Clean and prepare input text
|
164 |
+
text = text.strip()
|
165 |
+
entity = entity.strip()
|
166 |
+
|
167 |
+
# Construct prompt with better formatting
|
168 |
+
prompt = f"""<s>Analyze the following news about {entity}:
|
169 |
+
|
170 |
+
Text: {text}
|
171 |
+
|
172 |
+
Task: Identify the main event type and provide a brief summary.
|
173 |
+
|
174 |
+
Event types:
|
175 |
+
1. Отчетность - Events related to financial reports, earnings, revenue, EBITDA
|
176 |
+
2. РЦБ - Events related to securities, bonds, stock market, defaults, restructuring
|
177 |
+
3. Суд - Events related to legal proceedings, lawsuits, arbitration
|
178 |
+
4. Нет - No significant events detected
|
179 |
+
|
180 |
+
Required output format:
|
181 |
+
Тип: [event type]
|
182 |
+
Краткое описание: [1-2 sentence summary]</s>"""
|
183 |
+
|
184 |
+
# Process with MT5
|
185 |
+
try:
|
186 |
+
inputs = self.tokenizer(
|
187 |
+
prompt,
|
188 |
+
return_tensors="pt",
|
189 |
+
padding=True,
|
190 |
+
truncation=True,
|
191 |
+
max_length=512
|
192 |
+
).to(self.device)
|
193 |
+
|
194 |
+
outputs = self.model.generate(
|
195 |
+
**inputs,
|
196 |
+
max_length=300, # Increased for better summaries
|
197 |
+
num_return_sequences=1,
|
198 |
+
do_sample=False,
|
199 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
200 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
201 |
+
no_repeat_ngram_size=3 # Prevent repetition
|
202 |
+
)
|
203 |
+
|
204 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
205 |
+
|
206 |
+
except torch.cuda.OutOfMemoryError:
|
207 |
+
st.warning("GPU memory exceeded, falling back to CPU")
|
208 |
+
self.model = self.model.to('cpu')
|
209 |
+
inputs = inputs.to('cpu')
|
210 |
+
outputs = self.model.generate(
|
211 |
+
**inputs,
|
212 |
+
max_length=300,
|
213 |
+
num_return_sequences=1,
|
214 |
+
do_sample=False,
|
215 |
+
pad_token_id=self.tokenizer.pad_token_id
|
216 |
+
)
|
217 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
218 |
+
self.model = self.model.to(self.device) # Move back to GPU
|
219 |
+
|
220 |
+
# Enhanced response parsing
|
221 |
if "Тип:" in response and "Краткое описание:" in response:
|
222 |
+
try:
|
223 |
+
# Split and clean parts
|
224 |
+
parts = response.split("Краткое описание:")
|
225 |
+
type_part = parts[0].split("Тип:")[1].strip()
|
226 |
+
|
227 |
+
# Validate event type with fuzzy matching
|
228 |
valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"]
|
229 |
+
|
230 |
+
# Check for exact matches first
|
231 |
+
if type_part in valid_types:
|
232 |
+
event_type = type_part
|
233 |
+
else:
|
234 |
+
# Check keywords for each type
|
235 |
+
keywords = {
|
236 |
+
"Отчетность": ["отчет", "выручка", "прибыль", "ebitda", "финанс"],
|
237 |
+
"РЦБ": ["облигаци", "купон", "дефолт", "реструктуризац", "ценные бумаги"],
|
238 |
+
"Суд": ["суд", "иск", "арбитраж", "разбирательств"]
|
239 |
+
}
|
240 |
+
|
241 |
+
# Look for keywords in both type and summary
|
242 |
+
full_text = response.lower()
|
243 |
+
for event_category, category_keywords in keywords.items():
|
244 |
+
if any(keyword in full_text for keyword in category_keywords):
|
245 |
+
event_type = event_category
|
246 |
+
break
|
247 |
+
|
248 |
+
# Extract and clean summary
|
249 |
+
if len(parts) > 1:
|
250 |
+
summary = parts[1].strip()
|
251 |
+
# Ensure summary isn't too long
|
252 |
+
if len(summary) > 200:
|
253 |
+
summary = summary[:197] + "..."
|
254 |
+
|
255 |
+
# Add entity reference if missing
|
256 |
+
if entity.lower() not in summary.lower():
|
257 |
+
summary = f"Компания {entity}: {summary}"
|
258 |
+
|
259 |
+
except IndexError:
|
260 |
+
st.warning("Error parsing model response format")
|
261 |
+
return "Нет", "Error parsing response"
|
262 |
+
|
263 |
+
# Additional validation
|
264 |
+
if not summary or len(summary) < 5:
|
265 |
+
keywords = {
|
266 |
+
"Отчетность": "Обнаружена информация о финансовой отчетности",
|
267 |
+
"РЦБ": "Обнаружена информация о ценных бумагах",
|
268 |
+
"Суд": "Обнаружена информация о судебном разбирательстве",
|
269 |
+
"Нет": "Значимых событий не обнаружено"
|
270 |
+
}
|
271 |
+
summary = f"{keywords.get(event_type, 'Требуется дополнительный анализ')} ({entity})"
|
272 |
|
|
|
|
|
|
|
273 |
return event_type, summary
|
274 |
+
|
275 |
except Exception as e:
|
276 |
st.warning(f"Event detection error: {str(e)}")
|
277 |
+
# Try to provide more specific error information
|
278 |
+
if "CUDA" in str(e):
|
279 |
+
return "Нет", "GPU error - falling back to CPU needed"
|
280 |
+
elif "tokenizer" in str(e):
|
281 |
+
return "Нет", "Text processing error"
|
282 |
+
elif "model" in str(e):
|
283 |
+
return "Нет", "Model inference error"
|
284 |
+
else:
|
285 |
+
return "Нет", "Ошибка анализа"
|
286 |
+
|
287 |
|
288 |
def ensure_groq_llm():
|
289 |
"""Initialize Groq LLM for impact estimation"""
|
|
|
494 |
model="yiyanghkust/finbert-tone",
|
495 |
return_all_scores=True
|
496 |
)
|
497 |
+
st.success("служебное сообщение: BERT-модели запущены для детекции новостей")
|
498 |
except Exception as e:
|
499 |
st.error(f"Ошибка запуска BERT: {str(e)}")
|
500 |
raise
|
|
|
557 |
# Initialize fallback translator
|
558 |
self.fallback_translator = GoogleTranslator(source='ru', target='en')
|
559 |
self.legacy_translator = LegacyTranslator()
|
560 |
+
st.success("служебное сообщение: запустил систему перевода")
|
561 |
except Exception as e:
|
562 |
st.error(f"Ошибка запуска перевода: {str(e)}")
|
563 |
raise
|
|
|
784 |
st.error(f"Ошибка в обработке файла: {str(e)}")
|
785 |
return None
|
786 |
|
787 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
788 |
|
789 |
|
790 |
def create_download_section(excel_data, pdf_data):
|
|
|
1031 |
'Текст сообщения'
|
1032 |
])
|
1033 |
|
1034 |
+
def translate_reasoning_to_russian(llm, text):
|
1035 |
+
"""Modified to handle both standard LLMs and FallbackLLMSystem"""
|
1036 |
+
if isinstance(llm, FallbackLLMSystem):
|
1037 |
+
# Direct translation using MT5
|
1038 |
+
response = llm.invoke({
|
1039 |
+
'template_result': f"Translate to Russian: {text}"
|
1040 |
+
})
|
1041 |
+
return response.content.strip()
|
1042 |
+
else:
|
1043 |
+
# Original LangChain approach
|
1044 |
+
template = """
|
1045 |
+
Translate this English explanation to Russian, maintaining a formal business style:
|
1046 |
+
"{text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1047 |
|
1048 |
+
Your response should contain only the Russian translation.
|
1049 |
+
"""
|
1050 |
+
prompt = PromptTemplate(template=template, input_variables=["text"])
|
1051 |
+
chain = prompt | llm
|
1052 |
+
response = chain.invoke({"text": text})
|
|
|
|
|
|
|
1053 |
|
1054 |
+
# Handle different response types
|
1055 |
+
if hasattr(response, 'content'):
|
1056 |
+
return response.content.strip()
|
1057 |
+
elif isinstance(response, str):
|
1058 |
+
return response.strip()
|
1059 |
+
else:
|
1060 |
+
return str(response).strip()
|
1061 |
+
|
1062 |
+
def create_output_file(df, uploaded_file, llm):
|
1063 |
+
try:
|
1064 |
+
wb = load_workbook("sample_file.xlsx")
|
|
|
1065 |
|
1066 |
+
# Rest of the code remains the same until the 'Анализ' sheet processing
|
|
|
|
|
|
|
|
|
|
|
1067 |
|
1068 |
+
# Update 'Анализ' sheet with modified translation handling
|
1069 |
ws = wb['Анализ']
|
1070 |
row_idx = 4
|
1071 |
for _, row in df[df['Sentiment'] == 'Negative'].iterrows():
|
1072 |
+
ws.cell(row=row_idx, column=5, value=row['Объект'])
|
1073 |
+
ws.cell(row=row_idx, column=6, value=row['Заголовок'])
|
1074 |
+
ws.cell(row=row_idx, column=7, value="Риск убытка")
|
1075 |
|
1076 |
+
# Enhanced translation handling
|
1077 |
if pd.notna(row['Reasoning']):
|
1078 |
+
try:
|
1079 |
+
translated_reasoning = translate_reasoning_to_russian(llm, row['Reasoning'])
|
1080 |
+
ws.cell(row=row_idx, column=8, value=translated_reasoning)
|
1081 |
+
except Exception as e:
|
1082 |
+
st.warning(f"Translation error for row {row_idx}: {str(e)}")
|
1083 |
+
ws.cell(row=row_idx, column=8, value=row['Reasoning']) # Use original text as fallback
|
1084 |
|
1085 |
+
ws.cell(row=row_idx, column=9, value=row['Выдержки из текста'])
|
1086 |
row_idx += 1
|
1087 |
|
1088 |
+
# Continue with the rest of the function...
|
1089 |
+
|
1090 |
+
output = io.BytesIO()
|
1091 |
+
wb.save(output)
|
1092 |
+
output.seek(0)
|
1093 |
+
return output
|
1094 |
+
|
|
|
|
|
1095 |
except Exception as e:
|
1096 |
st.warning(f"Ошибка при создании выходного файла: {str(e)}")
|
1097 |
+
return None
|
|
|
|
|
|
|
|
|
1098 |
|
1099 |
def main():
|
1100 |
st.set_page_config(layout="wide")
|
1101 |
|
1102 |
with st.sidebar:
|
1103 |
+
st.title("::: AI-анализ мониторинга новостей (v.3.60):::")
|
1104 |
st.subheader("по материалам СКАН-ИНТЕРФАКС")
|
1105 |
|
1106 |
model_choice = st.radio(
|