Spaces:
Running
Running
Commit
·
9e97a7c
1
Parent(s):
45f1473
progress more 46
Browse files
app.py
CHANGED
@@ -8,6 +8,7 @@ from pymystem3 import Mystem
|
|
8 |
import io
|
9 |
from rapidfuzz import fuzz
|
10 |
from tqdm.auto import tqdm
|
|
|
11 |
import torch
|
12 |
from openpyxl import load_workbook
|
13 |
from openpyxl import Workbook
|
@@ -21,18 +22,17 @@ from langchain.chains import LLMChain
|
|
21 |
mystem = Mystem()
|
22 |
|
23 |
# Set up the sentiment analyzers
|
|
|
24 |
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
25 |
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
26 |
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
|
27 |
-
rubert1 = pipeline("sentiment-analysis", model="DeepPavlov/rubert-base-cased")
|
28 |
-
rubert2 = pipeline("sentiment-analysis", model="blanchefort/rubert-base-cased-sentiment")
|
29 |
-
|
30 |
-
# Translation model for Russian to English
|
31 |
-
model_name = "Helsinki-NLP/opus-mt-ru-en"
|
32 |
-
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
-
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
34 |
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
def init_langchain_llm():
|
38 |
pipe = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
@@ -127,10 +127,252 @@ def create_output_file_with_llm(df, uploaded_file, analysis_df):
|
|
127 |
output.seek(0)
|
128 |
return output
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def main():
|
133 |
-
st.title("... приступим к анализу... версия
|
134 |
|
135 |
# Initialize session state
|
136 |
if 'processed_df' not in st.session_state:
|
|
|
8 |
import io
|
9 |
from rapidfuzz import fuzz
|
10 |
from tqdm.auto import tqdm
|
11 |
+
import time
|
12 |
import torch
|
13 |
from openpyxl import load_workbook
|
14 |
from openpyxl import Workbook
|
|
|
22 |
mystem = Mystem()
|
23 |
|
24 |
# Set up the sentiment analyzers
|
25 |
+
|
26 |
finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert")
|
27 |
roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
28 |
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
|
29 |
+
rubert1 = pipeline("sentiment-analysis", model = "DeepPavlov/rubert-base-cased")
|
30 |
+
rubert2 = pipeline("sentiment-analysis", model = "blanchefort/rubert-base-cased-sentiment")
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def init_langchain_llm():
|
33 |
+
pipe = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
34 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
35 |
+
return llm
|
36 |
|
37 |
def init_langchain_llm():
|
38 |
pipe = pipeline("text-generation", model="nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
|
|
127 |
output.seek(0)
|
128 |
return output
|
129 |
|
130 |
+
def create_analysis_data(df):
|
131 |
+
analysis_data = []
|
132 |
+
for _, row in df.iterrows():
|
133 |
+
if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
|
134 |
+
analysis_data.append([row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', '', row['Выдержки из текста']])
|
135 |
+
return pd.DataFrame(analysis_data, columns=['Объект', 'Заголовок', 'Признак', 'Пояснение', 'Текст сообщения'])
|
136 |
+
|
137 |
+
# Function for lemmatizing Russian text
|
138 |
+
def lemmatize_text(text):
|
139 |
+
if pd.isna(text):
|
140 |
+
return ""
|
141 |
+
|
142 |
+
if not isinstance(text, str):
|
143 |
+
text = str(text)
|
144 |
+
|
145 |
+
words = text.split()
|
146 |
+
lemmatized_words = []
|
147 |
+
for word in tqdm(words, desc="Lemmatizing", unit="word"):
|
148 |
+
lemmatized_word = ''.join(mystem.lemmatize(word))
|
149 |
+
lemmatized_words.append(lemmatized_word)
|
150 |
+
return ' '.join(lemmatized_words)
|
151 |
+
|
152 |
+
# Translation model for Russian to English
|
153 |
+
model_name = "Helsinki-NLP/opus-mt-ru-en"
|
154 |
+
translation_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
155 |
+
translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
156 |
+
|
157 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en")
|
158 |
+
|
159 |
+
|
160 |
+
def translate(text):
|
161 |
+
# Tokenize the input text
|
162 |
+
inputs = translation_tokenizer(text, return_tensors="pt", truncation=True)
|
163 |
+
|
164 |
+
# Calculate max_length based on input length
|
165 |
+
input_length = inputs.input_ids.shape[1]
|
166 |
+
max_length = max(input_length + 10, int(input_length * 1.5)) # Ensure at least 10 new tokens
|
167 |
+
|
168 |
+
# Generate translation
|
169 |
+
translated_tokens = translation_model.generate(
|
170 |
+
**inputs,
|
171 |
+
max_new_tokens=max_length, # Use max_new_tokens instead of max_length
|
172 |
+
num_beams=5,
|
173 |
+
no_repeat_ngram_size=2,
|
174 |
+
early_stopping=True
|
175 |
+
)
|
176 |
+
|
177 |
+
# Decode the translated tokens
|
178 |
+
translated_text = translation_tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
|
179 |
+
return translated_text
|
180 |
+
|
181 |
+
# Functions for FinBERT, RoBERTa, and FinBERT-Tone with label mapping
|
182 |
+
def get_mapped_sentiment(result):
|
183 |
+
label = result['label'].lower()
|
184 |
+
if label in ["positive", "label_2", "pos", "pos_label"]:
|
185 |
+
return "Positive"
|
186 |
+
elif label in ["negative", "label_0", "neg", "neg_label"]:
|
187 |
+
return "Negative"
|
188 |
+
return "Neutral"
|
189 |
+
|
190 |
+
@sentiment_analysis_decorator
|
191 |
+
def get_rubert1_sentiment(text):
|
192 |
+
result = rubert1(text, truncation=True, max_length=512)[0]
|
193 |
+
return get_mapped_sentiment(result)
|
194 |
+
|
195 |
+
@sentiment_analysis_decorator
|
196 |
+
def get_rubert2_sentiment(text):
|
197 |
+
result = rubert2(text, truncation=True, max_length=512)[0]
|
198 |
+
return get_mapped_sentiment(result)
|
199 |
+
|
200 |
+
@sentiment_analysis_decorator
|
201 |
+
def get_finbert_sentiment(text):
|
202 |
+
result = finbert(text, truncation=True, max_length=512)[0]
|
203 |
+
return get_mapped_sentiment(result)
|
204 |
+
|
205 |
+
@sentiment_analysis_decorator
|
206 |
+
def get_roberta_sentiment(text):
|
207 |
+
result = roberta(text, truncation=True, max_length=512)[0]
|
208 |
+
return get_mapped_sentiment(result)
|
209 |
+
|
210 |
+
@sentiment_analysis_decorator
|
211 |
+
def get_finbert_tone_sentiment(text):
|
212 |
+
result = finbert_tone(text, truncation=True, max_length=512)[0]
|
213 |
+
return get_mapped_sentiment(result)
|
214 |
+
|
215 |
+
#Fuzzy filter out similar news for the same NER
|
216 |
+
def fuzzy_deduplicate(df, column, threshold=65):
|
217 |
+
seen_texts = []
|
218 |
+
indices_to_keep = []
|
219 |
+
for i, text in enumerate(df[column]):
|
220 |
+
if pd.isna(text):
|
221 |
+
indices_to_keep.append(i)
|
222 |
+
continue
|
223 |
+
text = str(text)
|
224 |
+
if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts):
|
225 |
+
seen_texts.append(text)
|
226 |
+
indices_to_keep.append(i)
|
227 |
+
return df.iloc[indices_to_keep]
|
228 |
+
|
229 |
+
def format_elapsed_time(seconds):
|
230 |
+
hours, remainder = divmod(int(seconds), 3600)
|
231 |
+
minutes, seconds = divmod(remainder, 60)
|
232 |
+
|
233 |
+
time_parts = []
|
234 |
+
if hours > 0:
|
235 |
+
time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}")
|
236 |
+
if minutes > 0:
|
237 |
+
time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}")
|
238 |
+
if seconds > 0 or not time_parts: # always show seconds if it's the only non-zero value
|
239 |
+
time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}")
|
240 |
+
|
241 |
+
return " ".join(time_parts)
|
242 |
+
|
243 |
+
|
244 |
+
def process_file(uploaded_file):
|
245 |
+
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
246 |
+
|
247 |
+
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
|
248 |
+
missing_columns = [col for col in required_columns if col not in df.columns]
|
249 |
+
if missing_columns:
|
250 |
+
st.error(f"Error: The following required columns are missing from the input file: {', '.join(missing_columns)}")
|
251 |
+
st.stop()
|
252 |
+
|
253 |
+
original_news_count = len(df)
|
254 |
+
|
255 |
+
# Apply fuzzy deduplication
|
256 |
+
df = df.groupby('Объект').apply(
|
257 |
+
lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65)
|
258 |
+
).reset_index(drop=True)
|
259 |
+
|
260 |
+
remaining_news_count = len(df)
|
261 |
+
duplicates_removed = original_news_count - remaining_news_count
|
262 |
+
|
263 |
+
st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.")
|
264 |
+
|
265 |
+
# Translate texts
|
266 |
+
translated_texts = []
|
267 |
+
lemmatized_texts = []
|
268 |
+
progress_bar = st.progress(0)
|
269 |
+
progress_text = st.empty()
|
270 |
+
total_news = len(df)
|
271 |
+
|
272 |
+
texts = df['Выдержки из текста'].tolist()
|
273 |
+
# Data validation
|
274 |
+
texts = [str(text) if not pd.isna(text) else "" for text in texts]
|
275 |
+
|
276 |
+
for text in df['Выдержки из текста']:
|
277 |
+
lemmatized_texts.append(lemmatize_text(text))
|
278 |
+
|
279 |
+
for i, text in enumerate(lemmatized_texts):
|
280 |
+
translated_text = translate(str(text))
|
281 |
+
translated_texts.append(translated_text)
|
282 |
+
progress_bar.progress((i + 1) / len(df))
|
283 |
+
progress_text.text(f"{i + 1} из {total_news} сообщений предобработано")
|
284 |
+
|
285 |
+
# Perform sentiment analysis
|
286 |
+
rubert2_results = [get_rubert2_sentiment(text) for text in texts]
|
287 |
+
finbert_results = [get_finbert_sentiment(text) for text in translated_texts]
|
288 |
+
roberta_results = [get_roberta_sentiment(text) for text in translated_texts]
|
289 |
+
finbert_tone_results = [get_finbert_tone_sentiment(text) for text in translated_texts]
|
290 |
+
|
291 |
+
# Create a new DataFrame with processed data
|
292 |
+
processed_df = pd.DataFrame({
|
293 |
+
'Объект': df['Объект'],
|
294 |
+
'Заголовок': df['Заголовок'], # Preserve original 'Заголовок'
|
295 |
+
'ruBERT2': rubert2_results,
|
296 |
+
'FinBERT': finbert_results,
|
297 |
+
'RoBERTa': roberta_results,
|
298 |
+
'FinBERT-Tone': finbert_tone_results,
|
299 |
+
'Выдержки из текста': df['Выдержки из текста'],
|
300 |
+
'Translated': translated_texts
|
301 |
+
})
|
302 |
+
|
303 |
+
return processed_df
|
304 |
+
|
305 |
+
def create_output_file(df, uploaded_file, analysis_df):
|
306 |
+
# Load the sample file to use as a template
|
307 |
+
wb = load_workbook("sample_file.xlsx")
|
308 |
+
|
309 |
+
# Process data for 'Сводка' sheet
|
310 |
+
entities = df['Объект'].unique()
|
311 |
+
summary_data = []
|
312 |
+
for entity in entities:
|
313 |
+
entity_df = df[df['Объект'] == entity]
|
314 |
+
total_news = len(entity_df)
|
315 |
+
negative_news = sum((entity_df['FinBERT'] == 'Negative') |
|
316 |
+
(entity_df['RoBERTa'] == 'Negative') |
|
317 |
+
(entity_df['FinBERT-Tone'] == 'Negative'))
|
318 |
+
positive_news = sum((entity_df['FinBERT'] == 'Positive') |
|
319 |
+
(entity_df['RoBERTa'] == 'Positive') |
|
320 |
+
(entity_df['FinBERT-Tone'] == 'Positive'))
|
321 |
+
summary_data.append([entity, total_news, negative_news, positive_news])
|
322 |
+
|
323 |
+
summary_df = pd.DataFrame(summary_data, columns=['Объект', 'Всего новостей', 'Отрицательные', 'Положительные'])
|
324 |
+
summary_df = summary_df.sort_values('Отрицательные', ascending=False)
|
325 |
+
|
326 |
+
# Write 'Сводка' sheet
|
327 |
+
ws = wb['Сводка']
|
328 |
+
for r_idx, row in enumerate(dataframe_to_rows(summary_df, index=False, header=False), start=4):
|
329 |
+
for c_idx, value in enumerate(row, start=5):
|
330 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
331 |
+
|
332 |
+
# Process data for '��начимые' sheet
|
333 |
+
|
334 |
+
significant_data = []
|
335 |
+
for _, row in df.iterrows():
|
336 |
+
if any(row[model] in ['Negative', 'Positive'] for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']):
|
337 |
+
sentiment = 'Negative' if any(row[model] == 'Negative' for model in ['FinBERT', 'RoBERTa', 'FinBERT-Tone']) else 'Positive'
|
338 |
+
significant_data.append([row['Объект'], '', sentiment, '', row['Заголовок'], row['Выдержки из текста']])
|
339 |
+
|
340 |
+
# Write 'Значимые' sheet
|
341 |
+
ws = wb['Значимые']
|
342 |
+
for r_idx, row in enumerate(significant_data, start=3):
|
343 |
+
for c_idx, value in enumerate(row, start=3):
|
344 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
345 |
+
|
346 |
+
# Write 'Анализ' sheet
|
347 |
+
ws = wb['Анализ']
|
348 |
+
for r_idx, row in enumerate(dataframe_to_rows(analysis_df, index=False, header=False), start=4):
|
349 |
+
for c_idx, value in enumerate(row, start=5):
|
350 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
351 |
+
|
352 |
+
# Copy 'Публикации' sheet from original uploaded file
|
353 |
+
original_df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
354 |
+
ws = wb['Публикации']
|
355 |
+
for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1):
|
356 |
+
for c_idx, value in enumerate(row, start=1):
|
357 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
358 |
+
|
359 |
+
# Add 'Тех.приложение' sheet with processed data
|
360 |
+
if 'Тех.приложение' not in wb.sheetnames:
|
361 |
+
wb.create_sheet('Тех.приложение')
|
362 |
+
ws = wb['Тех.приложение']
|
363 |
+
for r_idx, row in enumerate(dataframe_to_rows(df, index=False, header=True), start=1):
|
364 |
+
for c_idx, value in enumerate(row, start=1):
|
365 |
+
ws.cell(row=r_idx, column=c_idx, value=value)
|
366 |
+
|
367 |
+
# Save the workbook to a BytesIO object
|
368 |
+
output = io.BytesIO()
|
369 |
+
wb.save(output)
|
370 |
+
output.seek(0)
|
371 |
+
|
372 |
+
return output
|
373 |
|
374 |
def main():
|
375 |
+
st.title("... приступим к анализу... версия 46")
|
376 |
|
377 |
# Initialize session state
|
378 |
if 'processed_df' not in st.session_state:
|