Spaces:
Running
Running
Commit
·
68cd5a6
1
Parent(s):
229101e
progress more (back to 3.20)
Browse files
app.py
CHANGED
@@ -98,32 +98,7 @@ roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-
|
|
98 |
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
|
99 |
|
100 |
|
101 |
-
def translate_text(llm, text):
|
102 |
-
template = """
|
103 |
-
Translate this Russian text into English:
|
104 |
-
"{text}"
|
105 |
-
|
106 |
-
Your response should contain only the English translation.
|
107 |
-
"""
|
108 |
-
prompt = PromptTemplate(template=template, input_variables=["text"])
|
109 |
-
chain = prompt | llm | RunnablePassthrough()
|
110 |
-
response = chain.invoke({"text": text})
|
111 |
-
|
112 |
-
# Handle different response types
|
113 |
-
if hasattr(response, 'content'): # If it's an AIMessage object
|
114 |
-
return response.content.strip()
|
115 |
-
elif isinstance(response, str): # If it's a string
|
116 |
-
return response.strip()
|
117 |
-
else:
|
118 |
-
return str(response).strip() # Convert any other type to string
|
119 |
|
120 |
-
def get_mapped_sentiment(result):
|
121 |
-
label = result['label'].lower()
|
122 |
-
if label in ["positive", "label_2", "pos", "pos_label"]:
|
123 |
-
return "Positive"
|
124 |
-
elif label in ["negative", "label_0", "neg", "neg_label"]:
|
125 |
-
return "Negative"
|
126 |
-
return "Neutral"
|
127 |
|
128 |
def analyze_sentiment(text):
|
129 |
finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0])
|
@@ -150,6 +125,42 @@ def fuzzy_deduplicate(df, column, threshold=65):
|
|
150 |
seen_texts.append(text)
|
151 |
indices_to_keep.append(i)
|
152 |
return df.iloc[indices_to_keep]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
def init_langchain_llm(model_choice):
|
155 |
try:
|
@@ -165,13 +176,13 @@ def init_langchain_llm(model_choice):
|
|
165 |
temperature=0.0
|
166 |
)
|
167 |
|
168 |
-
elif model_choice == "ChatGPT-
|
169 |
if 'openai_key' not in st.secrets:
|
170 |
st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.")
|
171 |
st.stop()
|
172 |
|
173 |
return ChatOpenAI(
|
174 |
-
model="gpt-4o",
|
175 |
openai_api_key=st.secrets['openai_key'],
|
176 |
temperature=0.0
|
177 |
)
|
@@ -457,7 +468,7 @@ def create_output_file(df, uploaded_file, llm):
|
|
457 |
|
458 |
def main():
|
459 |
with st.sidebar:
|
460 |
-
st.title("::: AI-анализ мониторинга новостей (v.3.
|
461 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
462 |
|
463 |
model_choice = st.radio(
|
|
|
98 |
finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone")
|
99 |
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
def analyze_sentiment(text):
|
104 |
finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0])
|
|
|
125 |
seen_texts.append(text)
|
126 |
indices_to_keep.append(i)
|
127 |
return df.iloc[indices_to_keep]
|
128 |
+
def translate_text(llm, text):
|
129 |
+
try:
|
130 |
+
# Debug print
|
131 |
+
st.write(f"Debug - Model type: {type(llm)}")
|
132 |
+
st.write(f"Debug - Model attributes: {dir(llm)}")
|
133 |
+
|
134 |
+
messages = [
|
135 |
+
{"role": "system", "content": "You are a translator. Translate the given Russian text to English accurately and concisely."},
|
136 |
+
{"role": "user", "content": f"Translate this Russian text to English: {text}"}
|
137 |
+
]
|
138 |
+
|
139 |
+
# For different model types, we'll use different approaches
|
140 |
+
if isinstance(llm, ChatOpenAI):
|
141 |
+
try:
|
142 |
+
# Direct ChatCompletion call
|
143 |
+
response = llm.invoke(messages)
|
144 |
+
st.write(f"Debug - Response type: {type(response)}")
|
145 |
+
st.write(f"Debug - Response: {response}")
|
146 |
+
|
147 |
+
# Handle response based on its type
|
148 |
+
if hasattr(response, 'content'):
|
149 |
+
return response.content.strip()
|
150 |
+
elif isinstance(response, str):
|
151 |
+
return response.strip()
|
152 |
+
else:
|
153 |
+
return str(response).strip()
|
154 |
+
except Exception as e:
|
155 |
+
st.error(f"Translation API error: {str(e)}")
|
156 |
+
return text
|
157 |
+
else:
|
158 |
+
st.error(f"Unsupported model type: {type(llm)}")
|
159 |
+
return text
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
st.error(f"Translation error: {str(e)}")
|
163 |
+
return text # Return original text if translation fails
|
164 |
|
165 |
def init_langchain_llm(model_choice):
|
166 |
try:
|
|
|
176 |
temperature=0.0
|
177 |
)
|
178 |
|
179 |
+
elif model_choice == "ChatGPT-4-mini":
|
180 |
if 'openai_key' not in st.secrets:
|
181 |
st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.")
|
182 |
st.stop()
|
183 |
|
184 |
return ChatOpenAI(
|
185 |
+
model="gpt-4o-mini", # Changed from gpt-4o to gpt-4
|
186 |
openai_api_key=st.secrets['openai_key'],
|
187 |
temperature=0.0
|
188 |
)
|
|
|
468 |
|
469 |
def main():
|
470 |
with st.sidebar:
|
471 |
+
st.title("::: AI-анализ мониторинга новостей (v.3.20):::")
|
472 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
473 |
|
474 |
model_choice = st.radio(
|