Spaces:
Running
Running
Commit
·
05922ea
1
Parent(s):
7844008
3.41 translat helsinki
Browse files
app.py
CHANGED
@@ -27,14 +27,18 @@ from googletrans import Translator as LegacyTranslator
|
|
27 |
class TranslationSystem:
|
28 |
def __init__(self, batch_size=5):
|
29 |
"""
|
30 |
-
Initialize translation system using
|
31 |
"""
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def translate_text(self, text):
|
36 |
"""
|
37 |
-
Translate single text using
|
38 |
"""
|
39 |
if pd.isna(text) or not isinstance(text, str) or not text.strip():
|
40 |
return text
|
@@ -44,33 +48,73 @@ class TranslationSystem:
|
|
44 |
return text
|
45 |
|
46 |
try:
|
47 |
-
#
|
48 |
-
max_chunk_size =
|
49 |
|
50 |
-
if len(text) <= max_chunk_size:
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
# Split long text into chunks
|
54 |
-
chunks =
|
55 |
translated_chunks = []
|
56 |
|
57 |
for chunk in chunks:
|
58 |
-
|
59 |
-
translated_chunks.append(
|
60 |
-
time.sleep(0.
|
61 |
|
62 |
return ' '.join(translated_chunks)
|
63 |
|
64 |
except Exception as e:
|
65 |
st.warning(f"Translation error: {str(e)}. Using original text.")
|
66 |
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
def process_file(uploaded_file, model_choice, translation_method=None):
|
69 |
df = None
|
70 |
try:
|
71 |
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
72 |
llm = init_langchain_llm(model_choice)
|
73 |
-
translator = TranslationSystem(batch_size=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# Validate required columns
|
76 |
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
|
@@ -93,14 +137,6 @@ def process_file(uploaded_file, model_choice, translation_method=None): # Added
|
|
93 |
progress_bar = st.progress(0)
|
94 |
status_text = st.empty()
|
95 |
|
96 |
-
# Initialize new columns
|
97 |
-
df['Translated'] = ''
|
98 |
-
df['Sentiment'] = ''
|
99 |
-
df['Impact'] = ''
|
100 |
-
df['Reasoning'] = ''
|
101 |
-
df['Event_Type'] = ''
|
102 |
-
df['Event_Summary'] = ''
|
103 |
-
|
104 |
# Process in batches
|
105 |
batch_size = 5
|
106 |
for i in range(0, len(df), batch_size):
|
@@ -108,7 +144,7 @@ def process_file(uploaded_file, model_choice, translation_method=None): # Added
|
|
108 |
|
109 |
for idx, row in batch_df.iterrows():
|
110 |
try:
|
111 |
-
# Translation
|
112 |
translated_text = translator.translate_text(row['Выдержки из текста'])
|
113 |
df.at[idx, 'Translated'] = translated_text
|
114 |
|
@@ -116,7 +152,7 @@ def process_file(uploaded_file, model_choice, translation_method=None): # Added
|
|
116 |
sentiment = analyze_sentiment(translated_text)
|
117 |
df.at[idx, 'Sentiment'] = sentiment
|
118 |
|
119 |
-
# Event detection
|
120 |
event_type, event_summary = detect_events(
|
121 |
llm,
|
122 |
row['Выдержки из текста'],
|
@@ -554,7 +590,7 @@ def create_output_file(df, uploaded_file, llm):
|
|
554 |
return output
|
555 |
def main():
|
556 |
with st.sidebar:
|
557 |
-
st.title("::: AI-анализ мониторинга новостей (v.3.
|
558 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
559 |
|
560 |
model_choice = st.radio(
|
@@ -563,14 +599,7 @@ def main():
|
|
563 |
key="model_selector"
|
564 |
)
|
565 |
|
566 |
-
|
567 |
-
translation_method = st.radio(
|
568 |
-
"Выберите метод перевода:",
|
569 |
-
["googletrans", "llm"],
|
570 |
-
key="translation_selector",
|
571 |
-
help="Используется deep-translator независимо от выбора"
|
572 |
-
)
|
573 |
-
|
574 |
st.markdown(
|
575 |
"""
|
576 |
Использованы технологии:
|
|
|
27 |
class TranslationSystem:
|
28 |
def __init__(self, batch_size=5):
|
29 |
"""
|
30 |
+
Initialize translation system using Helsinki NLP model.
|
31 |
"""
|
32 |
+
try:
|
33 |
+
self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en") # Note: ru-en for Russian to English
|
34 |
+
self.batch_size = batch_size
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"Error initializing Helsinki NLP translator: {str(e)}")
|
37 |
+
raise
|
38 |
|
39 |
def translate_text(self, text):
|
40 |
"""
|
41 |
+
Translate single text using Helsinki NLP model with chunking for long texts.
|
42 |
"""
|
43 |
if pd.isna(text) or not isinstance(text, str) or not text.strip():
|
44 |
return text
|
|
|
48 |
return text
|
49 |
|
50 |
try:
|
51 |
+
# Helsinki NLP model typically has a max length limit
|
52 |
+
max_chunk_size = 512 # Standard transformer length
|
53 |
|
54 |
+
if len(text.split()) <= max_chunk_size:
|
55 |
+
# Direct translation for short texts
|
56 |
+
result = self.translator(text, max_length=512)
|
57 |
+
return result[0]['translation_text']
|
58 |
|
59 |
+
# Split long text into chunks by sentences
|
60 |
+
chunks = self._split_into_chunks(text, max_chunk_size)
|
61 |
translated_chunks = []
|
62 |
|
63 |
for chunk in chunks:
|
64 |
+
result = self.translator(chunk, max_length=512)
|
65 |
+
translated_chunks.append(result[0]['translation_text'])
|
66 |
+
time.sleep(0.1) # Small delay between chunks
|
67 |
|
68 |
return ' '.join(translated_chunks)
|
69 |
|
70 |
except Exception as e:
|
71 |
st.warning(f"Translation error: {str(e)}. Using original text.")
|
72 |
return text
|
73 |
+
|
74 |
+
def _split_into_chunks(self, text, max_length):
|
75 |
+
"""
|
76 |
+
Split text into chunks by sentences, respecting max length.
|
77 |
+
"""
|
78 |
+
# Simple sentence splitting by common punctuation
|
79 |
+
sentences = [s.strip() for s in text.replace('!', '.').replace('?', '.').split('.') if s.strip()]
|
80 |
+
|
81 |
+
chunks = []
|
82 |
+
current_chunk = []
|
83 |
+
current_length = 0
|
84 |
+
|
85 |
+
for sentence in sentences:
|
86 |
+
sentence_length = len(sentence.split())
|
87 |
+
|
88 |
+
if current_length + sentence_length > max_length:
|
89 |
+
if current_chunk:
|
90 |
+
chunks.append(' '.join(current_chunk))
|
91 |
+
current_chunk = [sentence]
|
92 |
+
current_length = sentence_length
|
93 |
+
else:
|
94 |
+
current_chunk.append(sentence)
|
95 |
+
current_length += sentence_length
|
96 |
+
|
97 |
+
if current_chunk:
|
98 |
+
chunks.append(' '.join(current_chunk))
|
99 |
+
|
100 |
+
return chunks
|
101 |
+
|
102 |
+
|
103 |
|
104 |
+
def process_file(uploaded_file, model_choice, translation_method=None):
|
105 |
df = None
|
106 |
try:
|
107 |
df = pd.read_excel(uploaded_file, sheet_name='Публикации')
|
108 |
llm = init_langchain_llm(model_choice)
|
109 |
+
translator = TranslationSystem(batch_size=5)
|
110 |
+
|
111 |
+
# Initialize all required columns first
|
112 |
+
df['Translated'] = ''
|
113 |
+
df['Sentiment'] = ''
|
114 |
+
df['Impact'] = ''
|
115 |
+
df['Reasoning'] = ''
|
116 |
+
df['Event_Type'] = ''
|
117 |
+
df['Event_Summary'] = ''
|
118 |
|
119 |
# Validate required columns
|
120 |
required_columns = ['Объект', 'Заголовок', 'Выдержки из текста']
|
|
|
137 |
progress_bar = st.progress(0)
|
138 |
status_text = st.empty()
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# Process in batches
|
141 |
batch_size = 5
|
142 |
for i in range(0, len(df), batch_size):
|
|
|
144 |
|
145 |
for idx, row in batch_df.iterrows():
|
146 |
try:
|
147 |
+
# Translation with Helsinki NLP
|
148 |
translated_text = translator.translate_text(row['Выдержки из текста'])
|
149 |
df.at[idx, 'Translated'] = translated_text
|
150 |
|
|
|
152 |
sentiment = analyze_sentiment(translated_text)
|
153 |
df.at[idx, 'Sentiment'] = sentiment
|
154 |
|
155 |
+
# Event detection
|
156 |
event_type, event_summary = detect_events(
|
157 |
llm,
|
158 |
row['Выдержки из текста'],
|
|
|
590 |
return output
|
591 |
def main():
|
592 |
with st.sidebar:
|
593 |
+
st.title("::: AI-анализ мониторинга новостей (v.3.41 ):::")
|
594 |
st.subheader("по материалам СКАН-ИНТЕРФАКС ")
|
595 |
|
596 |
model_choice = st.radio(
|
|
|
599 |
key="model_selector"
|
600 |
)
|
601 |
|
602 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
st.markdown(
|
604 |
"""
|
605 |
Использованы технологии:
|