Spaces:
Running
Running
Commit
·
1254c79
1
Parent(s):
21b8a80
progress more 75
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import time
|
4 |
import matplotlib.pyplot as plt
|
|
|
5 |
import io
|
6 |
from rapidfuzz import fuzz
|
7 |
import os
|
@@ -44,36 +45,39 @@ def init_langchain_llm():
|
|
44 |
|
45 |
def estimate_sentiment_and_impact(llm, news_text, entity):
|
46 |
template = """
|
47 |
-
|
48 |
-
|
49 |
-
2. Оцените потенциальное финансовое влияние в рублях для этого объекта в ближайшие 6 месяцев.
|
50 |
|
51 |
-
|
52 |
-
1.
|
53 |
-
2.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
|
|
63 |
Sentiment: [Positive/Negative/Neutral]
|
64 |
-
Impact: [
|
65 |
-
Reasoning: [
|
66 |
"""
|
67 |
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
|
68 |
chain = prompt | llm | RunnablePassthrough()
|
69 |
response = chain.invoke({"entity": entity, "news": news_text})
|
70 |
|
71 |
sentiment = "Neutral"
|
72 |
-
impact = "
|
73 |
-
reasoning = "
|
74 |
|
75 |
if isinstance(response, str):
|
76 |
try:
|
|
|
77 |
if "Sentiment:" in response:
|
78 |
sentiment_part = response.split("Sentiment:")[1].split("\n")[0].strip().lower()
|
79 |
if "positive" in sentiment_part:
|
@@ -81,10 +85,26 @@ def estimate_sentiment_and_impact(llm, news_text, entity):
|
|
81 |
elif "negative" in sentiment_part:
|
82 |
sentiment = "Negative"
|
83 |
|
|
|
84 |
if "Impact:" in response and "Reasoning:" in response:
|
85 |
impact_part, reasoning_part = response.split("Reasoning:")
|
86 |
impact = impact_part.split("Impact:")[1].strip()
|
87 |
reasoning = reasoning_part.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
except Exception as e:
|
89 |
st.error(f"Error parsing LLM response: {str(e)}")
|
90 |
|
@@ -286,7 +306,7 @@ def main():
|
|
286 |
unsafe_allow_html=True
|
287 |
)
|
288 |
|
289 |
-
st.title("
|
290 |
|
291 |
if 'processed_df' not in st.session_state:
|
292 |
st.session_state.processed_df = None
|
|
|
2 |
import pandas as pd
|
3 |
import time
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
from openpyxl.utils.dataframe import dataframe_to_rows
|
6 |
import io
|
7 |
from rapidfuzz import fuzz
|
8 |
import os
|
|
|
45 |
|
46 |
def estimate_sentiment_and_impact(llm, news_text, entity):
|
47 |
template = """
|
48 |
+
First, translate this Russian text into English:
|
49 |
+
"{news}"
|
|
|
50 |
|
51 |
+
Then, analyze the translated text about the entity "{entity}" and determine:
|
52 |
+
1. Sentiment (Positive/Negative/Neutral)
|
53 |
+
2. Estimate potential financial impact in Russian rubles for this entity in the next 6 months.
|
54 |
+
|
55 |
+
If precise monetary estimate is not possible, categorize the impact as one of the following:
|
56 |
+
1. "Significant risk of loss"
|
57 |
+
2. "Moderate risk of loss"
|
58 |
+
3. "Minor risk of loss"
|
59 |
+
4. "Probability of profit"
|
60 |
+
5. "Uncertain effect"
|
61 |
|
62 |
+
Provide a brief reasoning (maximum 100 words).
|
63 |
|
64 |
+
Your response should be in the following format:
|
65 |
+
Translation: [Your English translation]
|
66 |
Sentiment: [Positive/Negative/Neutral]
|
67 |
+
Impact: [Your estimate or category]
|
68 |
+
Reasoning: [Your reasoning]
|
69 |
"""
|
70 |
prompt = PromptTemplate(template=template, input_variables=["entity", "news"])
|
71 |
chain = prompt | llm | RunnablePassthrough()
|
72 |
response = chain.invoke({"entity": entity, "news": news_text})
|
73 |
|
74 |
sentiment = "Neutral"
|
75 |
+
impact = "Uncertain effect"
|
76 |
+
reasoning = "Unable to provide reasoning"
|
77 |
|
78 |
if isinstance(response, str):
|
79 |
try:
|
80 |
+
# Extract sentiment
|
81 |
if "Sentiment:" in response:
|
82 |
sentiment_part = response.split("Sentiment:")[1].split("\n")[0].strip().lower()
|
83 |
if "positive" in sentiment_part:
|
|
|
85 |
elif "negative" in sentiment_part:
|
86 |
sentiment = "Negative"
|
87 |
|
88 |
+
# Extract impact and reasoning
|
89 |
if "Impact:" in response and "Reasoning:" in response:
|
90 |
impact_part, reasoning_part = response.split("Reasoning:")
|
91 |
impact = impact_part.split("Impact:")[1].strip()
|
92 |
reasoning = reasoning_part.strip()
|
93 |
+
|
94 |
+
# Translate impact categories back to Russian
|
95 |
+
impact_mapping = {
|
96 |
+
"Significant risk of loss": "Значительный риск убытков",
|
97 |
+
"Moderate risk of loss": "Умеренный риск убытков",
|
98 |
+
"Minor risk of loss": "Незначительный риск убытков",
|
99 |
+
"Probability of profit": "Вероятность прибыли",
|
100 |
+
"Uncertain effect": "Неопределенный эффект"
|
101 |
+
}
|
102 |
+
|
103 |
+
for eng, rus in impact_mapping.items():
|
104 |
+
if eng.lower() in impact.lower():
|
105 |
+
impact = rus
|
106 |
+
break
|
107 |
+
|
108 |
except Exception as e:
|
109 |
st.error(f"Error parsing LLM response: {str(e)}")
|
110 |
|
|
|
306 |
unsafe_allow_html=True
|
307 |
)
|
308 |
|
309 |
+
st.title("::: анализ мониторинга новостей СКАН-ИНТЕРФАКС :::")
|
310 |
|
311 |
if 'processed_df' not in st.session_state:
|
312 |
st.session_state.processed_df = None
|