Spaces:
Sleeping
Sleeping
File size: 5,718 Bytes
f86bc23 411ded6 4200d56 032683a 4200d56 032683a dfbbeb5 032683a dfbbeb5 032683a 4200d56 032683a 4200d56 032683a 4200d56 032683a 4200d56 032683a 4200d56 032683a dfbbeb5 032683a 4200d56 da8d67c f86bc23 da8d67c 411ded6 da8d67c 411ded6 f86bc23 dfbbeb5 411ded6 973073a 4200d56 dfbbeb5 285e527 dfbbeb5 1218a4a dfbbeb5 032683a f58540c dfbbeb5 032683a dfbbeb5 f86bc23 9bcecd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
from PIL import Image, ImageFilter
import matplotlib.pyplot as plt
import matplotlib.cm as cm
def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf")
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf")
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
depth_min = prediction.min()
depth_max = prediction.max()
depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
depth_map = depth_vis.squeeze().cpu().numpy()
depth_map_inverted = 1.0 - depth_map
depth_map_inverted *= scale_factor
return depth_map_inverted
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
blur_radii = np.linspace(0, max_blur, num_layers)
blur_versions = [image.filter(ImageFilter.GaussianBlur(radius)) for radius in blur_radii]
thresholds = np.linspace(0, 1, num_layers + 1)
final_image = blur_versions[-1]
for i in range(num_layers - 1, -1, -1):
mask_array = np.logical_and(
depth_map >= thresholds[i],
depth_map < thresholds[i + 1]
).astype(np.uint8) * 255
mask_image = Image.fromarray(mask_array, mode="L")
final_image = Image.composite(blur_versions[i], final_image, mask_image)
return final_image
def process_depth_blur(uploaded_image, max_blur_value, scale_factor, num_layers):
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.open(uploaded_image)
image = uploaded_image.convert("RGB").resize((512, 512))
depth_map = compute_depth_map(image, scale_factor)
final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value)
return final_image
def create_heatmap(depth_map: np.ndarray, intensity: float) -> Image.Image:
normalized = np.clip(depth_map * intensity, 0, 1)
colormap = cm.get_cmap("inferno")
colored = colormap(normalized)
heatmap = (colored[:, :, :3] * 255).astype(np.uint8)
return Image.fromarray(heatmap)
def process_depth_heatmap(uploaded_image, intensity):
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.open(uploaded_image)
image = uploaded_image.convert("RGB").resize((512, 512))
depth_map = compute_depth_map(image, scale_factor=1.0)
heatmap_img = create_heatmap(depth_map, intensity)
return heatmap_img
def load_segmentation_model():
global seg_model, seg_device
if "seg_model" not in globals():
from ben2 import BEN_Base # Import BEN2
seg_model = BEN_Base.from_pretrained("PramaLLC/BEN2")
seg_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(seg_device).eval()
return seg_model, seg_device
def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.open(uploaded_image)
image = uploaded_image.convert("RGB").resize((512, 512))
seg_model, seg_device = load_segmentation_model()
blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius))
foreground = seg_model.inference(image, refine_foreground=False)
foreground_rgba = foreground.convert("RGBA")
_, _, _, alpha = foreground_rgba.split()
binary_mask = alpha.point(lambda x: 255 if x > 128 else 0, mode="L")
final_image = Image.composite(image, blurred_image, binary_mask)
return final_image
with gr.Blocks() as demo:
gr.Markdown("Gaussian Blur & Lens Blur Effect")
with gr.Tabs():
with gr.Tab("Gaussian Blur"):
seg_img = gr.Image(type="pil", label="Upload Image")
seg_blur = gr.Slider(5, 30, value=15, step=1, label="Gaussian Blur Radius")
seg_out = gr.Image(label="Gaussian Blurred Image")
seg_button = gr.Button("Process Gaussian Blur")
seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out)
with gr.Tab("Depth Heatmap"):
img_input2 = gr.Image(type="pil", label="Upload Image")
intensity_slider = gr.Slider(0.5, 5.0, value=1.0, label="Heatmap Intensity")
heatmap_output = gr.Image(label="Depth Heatmap")
heatmap_button = gr.Button("Generate Depth Heatmap")
heatmap_button.click(
process_depth_heatmap,
inputs=[img_input2, intensity_slider],
outputs=heatmap_output
)
with gr.Tab("Lens Blur"):
img_input = gr.Image(type="pil", label="Upload Image")
blur_slider = gr.Slider(1, 50, value=6, label="Maximum Blur Radius")
scale_slider = gr.Slider(0.1, 2.0, value=0.72, label="Depth Scale Factor")
layers_slider = gr.Slider(2, 10, value=2.91, label="Number of Layers")
blur_output = gr.Image(label="Lens Blur Result")
blur_button = gr.Button("Process Blur")
blur_button.click(
process_depth_blur,
inputs=[img_input, blur_slider, scale_slider, layers_slider],
outputs=blur_output
)
if __name__ == "__main__":
demo.launch(share=True)
|