joeWabbit commited on
Commit
411ded6
·
verified ·
1 Parent(s): cf76e77

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -54
app.py CHANGED
@@ -1,64 +1,92 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ import numpy as np
4
+ from transformers import AutoImageProcessor, AutoModelForDepthEstimation
5
+ from PIL import Image, ImageFilter
6
 
7
+ def load_depth_model():
8
+ """
9
+ Loads the depth estimation model and processor.
10
+ Returns (processor, model, device).
11
+ """
12
+ global processor, model, device
13
+ if "model" not in globals():
14
+ processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2")
15
+ model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2")
16
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
+ model.to(device).eval()
18
+ return processor, model, device
19
 
20
+ def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
21
+ """
22
+ Computes the depth map for a PIL image.
23
+ Inverts the map (i.e. force invert_depth=True) and scales it.
24
+ Returns a NumPy array in [0, 1]*scale_factor.
25
+ """
26
+ processor, model, device = load_depth_model()
27
+ inputs = processor(images=image, return_tensors="pt").to(device)
28
+ with torch.no_grad():
29
+ outputs = model(**inputs)
30
+ predicted_depth = outputs.predicted_depth
31
 
32
+ prediction = torch.nn.functional.interpolate(
33
+ predicted_depth.unsqueeze(1),
34
+ size=image.size[::-1], # PIL image size: (width, height)
35
+ mode="bicubic",
36
+ align_corners=False,
37
+ )
38
+ depth_min = prediction.min()
39
+ depth_max = prediction.max()
40
+ depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
41
+ depth_map = depth_vis.squeeze().cpu().numpy()
42
+ # Always invert depth so that near=0 and far=1
43
+ depth_map = 1.0 - depth_map
44
+ depth_map *= scale_factor
45
+ return depth_map
46
 
47
+ def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
48
+ """
49
+ Creates multiple blurred versions of 'image' (radii from 0 to max_blur)
50
+ and composites them based on the depth map split into num_layers bins.
51
+ """
52
+ blur_radii = np.linspace(0, max_blur, num_layers)
53
+ blur_versions = [image.filter(ImageFilter.GaussianBlur(r)) for r in blur_radii]
54
+ upper_bound = depth_map.max()
55
+ thresholds = np.linspace(0, upper_bound, num_layers + 1)
56
+ final_image = blur_versions[-1]
57
+ for i in range(num_layers - 1, -1, -1):
58
+ mask_array = np.logical_and(
59
+ depth_map >= thresholds[i],
60
+ depth_map < thresholds[i + 1]
61
+ ).astype(np.uint8) * 255
62
+ mask_image = Image.fromarray(mask_array, mode="L")
63
+ final_image = Image.composite(blur_versions[i], final_image, mask_image)
64
+ return final_image
65
 
66
+ def process_depth_blur(uploaded_image, max_blur_value, scale_factor, num_layers):
67
+ """
68
+ Processes the image with a depth-based blur.
69
+ The image is resized to 512x512, its depth is computed (with invert_depth always True),
70
+ and a layered blur is applied.
71
+ """
72
+ if not isinstance(uploaded_image, Image.Image):
73
+ uploaded_image = Image.open(uploaded_image)
74
+ image = uploaded_image.convert("RGB").resize((512, 512))
75
+ depth_map = compute_depth_map(image, scale_factor)
76
+ final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value)
77
+ return final_image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ with gr.Blocks() as demo:
80
+ gr.Markdown("# Depth-Based Lens Blur")
81
+ depth_img = gr.Image(type="pil", label="Upload Image")
82
+ depth_max_blur = gr.Slider(1.0, 5.0, value=3.0, step=0.1, label="Maximum Blur Radius")
83
+ depth_scale = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="Depth Scale Factor")
84
+ depth_layers = gr.Slider(2, 20, value=8, step=1, label="Number of Layers")
85
+ depth_out = gr.Image(label="Depth-Based Blurred Image")
86
+ depth_button = gr.Button("Process Depth Blur")
87
+ depth_button.click(process_depth_blur,
88
+ inputs=[depth_img, depth_max_blur, depth_scale, depth_layers],
89
+ outputs=depth_out)
90
 
91
  if __name__ == "__main__":
92
  demo.launch()