Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import numpy as np
|
4 |
-
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
5 |
from PIL import Image, ImageFilter
|
6 |
|
7 |
-
def
|
8 |
-
"""
|
9 |
-
Loads the
|
10 |
-
|
11 |
-
"""
|
12 |
-
global
|
13 |
-
if "
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
return
|
19 |
-
|
20 |
-
def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
|
21 |
-
"""
|
22 |
-
Computes the depth map for a PIL image.
|
23 |
-
Inverts the map (i.e. force invert_depth=True) and scales it.
|
24 |
-
Returns a NumPy array in [0, 1]*scale_factor.
|
25 |
-
"""
|
26 |
-
processor, model, device = load_depth_model()
|
27 |
-
inputs = processor(images=image, return_tensors="pt").to(device)
|
28 |
-
with torch.no_grad():
|
29 |
-
outputs = model(**inputs)
|
30 |
-
predicted_depth = outputs.predicted_depth
|
31 |
-
|
32 |
-
prediction = torch.nn.functional.interpolate(
|
33 |
-
predicted_depth.unsqueeze(1),
|
34 |
-
size=image.size[::-1], # PIL image size: (width, height)
|
35 |
-
mode="bicubic",
|
36 |
-
align_corners=False,
|
37 |
-
)
|
38 |
-
depth_min = prediction.min()
|
39 |
-
depth_max = prediction.max()
|
40 |
-
depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
|
41 |
-
depth_map = depth_vis.squeeze().cpu().numpy()
|
42 |
-
# Always invert depth so that near=0 and far=1
|
43 |
-
depth_map = 1.0 - depth_map
|
44 |
-
depth_map *= scale_factor
|
45 |
-
return depth_map
|
46 |
-
|
47 |
-
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
|
48 |
-
"""
|
49 |
-
Creates multiple blurred versions of 'image' (radii from 0 to max_blur)
|
50 |
-
and composites them based on the depth map split into num_layers bins.
|
51 |
-
"""
|
52 |
-
blur_radii = np.linspace(0, max_blur, num_layers)
|
53 |
-
blur_versions = [image.filter(ImageFilter.GaussianBlur(r)) for r in blur_radii]
|
54 |
-
upper_bound = depth_map.max()
|
55 |
-
thresholds = np.linspace(0, upper_bound, num_layers + 1)
|
56 |
-
final_image = blur_versions[-1]
|
57 |
-
for i in range(num_layers - 1, -1, -1):
|
58 |
-
mask_array = np.logical_and(
|
59 |
-
depth_map >= thresholds[i],
|
60 |
-
depth_map < thresholds[i + 1]
|
61 |
-
).astype(np.uint8) * 255
|
62 |
-
mask_image = Image.fromarray(mask_array, mode="L")
|
63 |
-
final_image = Image.composite(blur_versions[i], final_image, mask_image)
|
64 |
-
return final_image
|
65 |
|
66 |
-
def
|
67 |
"""
|
68 |
-
Processes the image with
|
69 |
-
The image is resized to 512x512
|
70 |
-
|
71 |
"""
|
72 |
if not isinstance(uploaded_image, Image.Image):
|
73 |
uploaded_image = Image.open(uploaded_image)
|
74 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
return final_image
|
78 |
|
79 |
with gr.Blocks() as demo:
|
80 |
-
gr.Markdown("#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
depth_button = gr.Button("Process Depth Blur")
|
87 |
-
depth_button.click(process_depth_blur,
|
88 |
-
inputs=[depth_img, depth_max_blur, depth_scale, depth_layers],
|
89 |
-
outputs=depth_out)
|
90 |
|
91 |
if __name__ == "__main__":
|
92 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
|
|
3 |
from PIL import Image, ImageFilter
|
4 |
|
5 |
+
def load_segmentation_model():
|
6 |
+
"""
|
7 |
+
Loads and caches the segmentation model from BEN2.
|
8 |
+
Ensure you have ben2 installed and accessible in your path.
|
9 |
+
"""
|
10 |
+
global seg_model, seg_device
|
11 |
+
if "seg_model" not in globals():
|
12 |
+
from ben2 import BEN_Base # Import BEN2
|
13 |
+
seg_model = BEN_Base.from_pretrained("PramaLLC/BEN2")
|
14 |
+
seg_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
seg_model.to(seg_device).eval()
|
16 |
+
return seg_model, seg_device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
|
19 |
"""
|
20 |
+
Processes the image with segmentation-based blur.
|
21 |
+
The image is resized to 512x512. A Gaussian blur with the specified radius is applied,
|
22 |
+
then the segmentation mask is computed to composite the sharp foreground over the blurred background.
|
23 |
"""
|
24 |
if not isinstance(uploaded_image, Image.Image):
|
25 |
uploaded_image = Image.open(uploaded_image)
|
26 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
27 |
+
seg_model, seg_device = load_segmentation_model()
|
28 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius))
|
29 |
+
|
30 |
+
# Generate segmentation mask (foreground)
|
31 |
+
foreground = seg_model.inference(image, refine_foreground=False)
|
32 |
+
foreground_rgba = foreground.convert("RGBA")
|
33 |
+
_, _, _, alpha = foreground_rgba.split()
|
34 |
+
binary_mask = alpha.point(lambda x: 255 if x > 128 else 0, mode="L")
|
35 |
+
final_image = Image.composite(image, blurred_image, binary_mask)
|
36 |
return final_image
|
37 |
|
38 |
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown("# Segmentation-Based Blur using BEN2")
|
40 |
+
seg_img = gr.Image(type="pil", label="Upload Image")
|
41 |
+
seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius")
|
42 |
+
seg_out = gr.Image(label="Segmentation-Based Blurred Image")
|
43 |
+
seg_button = gr.Button("Process Segmentation Blur")
|
44 |
+
seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out)
|
|
|
|
|
|
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
demo.launch()
|