Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,54 +5,32 @@ from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
|
5 |
from PIL import Image, ImageFilter
|
6 |
import matplotlib.pyplot as plt
|
7 |
import matplotlib.cm as cm
|
8 |
-
|
9 |
-
# ---------------------------
|
10 |
-
# Depth Estimation Utilities
|
11 |
-
# ---------------------------
|
12 |
def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
|
13 |
-
"""
|
14 |
-
Loads the LiheYoung/depth-anything-large-hf model and computes a depth map.
|
15 |
-
The depth map is normalized, inverted (so that near=0 and far=1),
|
16 |
-
and multiplied by the given scale_factor.
|
17 |
-
"""
|
18 |
-
# Load model and processor from pretrained weights
|
19 |
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
20 |
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf")
|
21 |
-
|
22 |
-
# Prepare image for the model
|
23 |
inputs = image_processor(images=image, return_tensors="pt")
|
24 |
with torch.no_grad():
|
25 |
outputs = model(**inputs)
|
26 |
predicted_depth = outputs.predicted_depth
|
27 |
|
28 |
-
# Interpolate predicted depth map to match image size
|
29 |
prediction = torch.nn.functional.interpolate(
|
30 |
predicted_depth.unsqueeze(1),
|
31 |
-
size=image.size[::-1],
|
32 |
mode="bicubic",
|
33 |
align_corners=False,
|
34 |
)
|
35 |
-
|
36 |
depth_min = prediction.min()
|
37 |
depth_max = prediction.max()
|
38 |
depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
|
39 |
depth_map = depth_vis.squeeze().cpu().numpy()
|
40 |
-
# Invert so that near=0 and far=1, then scale
|
41 |
depth_map_inverted = 1.0 - depth_map
|
42 |
depth_map_inverted *= scale_factor
|
43 |
return depth_map_inverted
|
44 |
|
45 |
-
# ---------------------------
|
46 |
-
# Depth-Based Blur Functions
|
47 |
-
# ---------------------------
|
48 |
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
|
49 |
-
"""
|
50 |
-
Creates multiple blurred versions of the image (using Gaussian blur with radii from 0 to max_blur)
|
51 |
-
and composites them using masks generated from bins of the normalized depth map.
|
52 |
-
"""
|
53 |
blur_radii = np.linspace(0, max_blur, num_layers)
|
54 |
blur_versions = [image.filter(ImageFilter.GaussianBlur(radius)) for radius in blur_radii]
|
55 |
-
# Use a fixed range (0 to 1) since the depth map is normalized
|
56 |
thresholds = np.linspace(0, 1, num_layers + 1)
|
57 |
final_image = blur_versions[-1]
|
58 |
for i in range(num_layers - 1, -1, -1):
|
@@ -65,51 +43,27 @@ def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max
|
|
65 |
return final_image
|
66 |
|
67 |
def process_depth_blur(uploaded_image, max_blur_value, scale_factor, num_layers):
|
68 |
-
"""
|
69 |
-
Resizes the uploaded image to 512x512, computes its depth map,
|
70 |
-
and applies layered blur based on the depth.
|
71 |
-
"""
|
72 |
if not isinstance(uploaded_image, Image.Image):
|
73 |
uploaded_image = Image.open(uploaded_image)
|
74 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
75 |
depth_map = compute_depth_map(image, scale_factor)
|
76 |
final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value)
|
77 |
return final_image
|
78 |
-
|
79 |
-
# ---------------------------
|
80 |
-
# Depth Heatmap Functions
|
81 |
-
# ---------------------------
|
82 |
def create_heatmap(depth_map: np.ndarray, intensity: float) -> Image.Image:
|
83 |
-
"""
|
84 |
-
Applies a colormap to the normalized depth map.
|
85 |
-
The 'intensity' slider multiplies the normalized depth values (clipped to [0,1])
|
86 |
-
before applying the "inferno" colormap.
|
87 |
-
"""
|
88 |
-
# Multiply depth map by intensity and clip to 0-1 range
|
89 |
normalized = np.clip(depth_map * intensity, 0, 1)
|
90 |
colormap = cm.get_cmap("inferno")
|
91 |
-
colored = colormap(normalized)
|
92 |
-
heatmap = (colored[:, :, :3] * 255).astype(np.uint8)
|
93 |
return Image.fromarray(heatmap)
|
94 |
|
95 |
def process_depth_heatmap(uploaded_image, intensity):
|
96 |
-
"""
|
97 |
-
Resizes the uploaded image to 512x512, computes its depth map (with scale factor 1.0),
|
98 |
-
and returns a heatmap visualization.
|
99 |
-
"""
|
100 |
if not isinstance(uploaded_image, Image.Image):
|
101 |
uploaded_image = Image.open(uploaded_image)
|
102 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
103 |
depth_map = compute_depth_map(image, scale_factor=1.0)
|
104 |
heatmap_img = create_heatmap(depth_map, intensity)
|
105 |
return heatmap_img
|
106 |
-
|
107 |
-
# --- Segmentation-Based Blur using BEN2 ---
|
108 |
def load_segmentation_model():
|
109 |
-
"""
|
110 |
-
Loads and caches the segmentation model from BEN2.
|
111 |
-
Ensure you have ben2 installed and accessible in your path.
|
112 |
-
"""
|
113 |
global seg_model, seg_device
|
114 |
if "seg_model" not in globals():
|
115 |
from ben2 import BEN_Base # Import BEN2
|
@@ -119,18 +73,11 @@ def load_segmentation_model():
|
|
119 |
return seg_model, seg_device
|
120 |
|
121 |
def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
|
122 |
-
"""
|
123 |
-
Processes the image with segmentation-based blur.
|
124 |
-
The image is resized to 512x512. A Gaussian blur with the specified radius is applied,
|
125 |
-
then the segmentation mask is computed to composite the sharp foreground over the blurred background.
|
126 |
-
"""
|
127 |
if not isinstance(uploaded_image, Image.Image):
|
128 |
uploaded_image = Image.open(uploaded_image)
|
129 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
130 |
seg_model, seg_device = load_segmentation_model()
|
131 |
blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius))
|
132 |
-
|
133 |
-
# Generate segmentation mask (foreground)
|
134 |
foreground = seg_model.inference(image, refine_foreground=False)
|
135 |
foreground_rgba = foreground.convert("RGBA")
|
136 |
_, _, _, alpha = foreground_rgba.split()
|
@@ -138,39 +85,29 @@ def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
|
|
138 |
final_image = Image.composite(image, blurred_image, binary_mask)
|
139 |
return final_image
|
140 |
|
141 |
-
|
142 |
with gr.Blocks() as demo:
|
143 |
-
gr.Markdown("#
|
144 |
with gr.Tabs():
|
145 |
-
with gr.Tab("
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
img_input = gr.Image(type="pil", label="Upload Image")
|
147 |
blur_slider = gr.Slider(1, 50, value=6, label="Maximum Blur Radius")
|
148 |
scale_slider = gr.Slider(0.1, 2.0, value=0.72, label="Depth Scale Factor")
|
149 |
layers_slider = gr.Slider(2, 10, value=2.91, label="Number of Layers")
|
150 |
-
blur_output = gr.Image(label="
|
151 |
-
blur_button = gr.Button("Process
|
152 |
blur_button.click(
|
153 |
process_depth_blur,
|
154 |
inputs=[img_input, blur_slider, scale_slider, layers_slider],
|
155 |
outputs=blur_output
|
156 |
)
|
157 |
-
|
158 |
-
img_input2 = gr.Image(type="pil", label="Upload Image")
|
159 |
-
intensity_slider = gr.Slider(0.5, 5.0, value=1.0, label="Heatmap Intensity")
|
160 |
-
heatmap_output = gr.Image(label="Depth Heatmap")
|
161 |
-
heatmap_button = gr.Button("Generate Depth Heatmap")
|
162 |
-
heatmap_button.click(
|
163 |
-
process_depth_heatmap,
|
164 |
-
inputs=[img_input2, intensity_slider],
|
165 |
-
outputs=heatmap_output
|
166 |
-
)
|
167 |
-
with gr.Tab("Segmentation-Based Blur (BEN2)"):
|
168 |
-
seg_img = gr.Image(type="pil", label="Upload Image")
|
169 |
-
seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius")
|
170 |
-
seg_out = gr.Image(label="Segmentation-Based Blurred Image")
|
171 |
-
seg_button = gr.Button("Process Segmentation Blur")
|
172 |
-
seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
# Optionally, set share=True to generate a public link.
|
176 |
demo.launch(share=True)
|
|
|
5 |
from PIL import Image, ImageFilter
|
6 |
import matplotlib.pyplot as plt
|
7 |
import matplotlib.cm as cm
|
|
|
|
|
|
|
|
|
8 |
def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf")
|
10 |
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf")
|
|
|
|
|
11 |
inputs = image_processor(images=image, return_tensors="pt")
|
12 |
with torch.no_grad():
|
13 |
outputs = model(**inputs)
|
14 |
predicted_depth = outputs.predicted_depth
|
15 |
|
|
|
16 |
prediction = torch.nn.functional.interpolate(
|
17 |
predicted_depth.unsqueeze(1),
|
18 |
+
size=image.size[::-1],
|
19 |
mode="bicubic",
|
20 |
align_corners=False,
|
21 |
)
|
22 |
+
|
23 |
depth_min = prediction.min()
|
24 |
depth_max = prediction.max()
|
25 |
depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
|
26 |
depth_map = depth_vis.squeeze().cpu().numpy()
|
|
|
27 |
depth_map_inverted = 1.0 - depth_map
|
28 |
depth_map_inverted *= scale_factor
|
29 |
return depth_map_inverted
|
30 |
|
|
|
|
|
|
|
31 |
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
|
|
|
|
|
|
|
|
|
32 |
blur_radii = np.linspace(0, max_blur, num_layers)
|
33 |
blur_versions = [image.filter(ImageFilter.GaussianBlur(radius)) for radius in blur_radii]
|
|
|
34 |
thresholds = np.linspace(0, 1, num_layers + 1)
|
35 |
final_image = blur_versions[-1]
|
36 |
for i in range(num_layers - 1, -1, -1):
|
|
|
43 |
return final_image
|
44 |
|
45 |
def process_depth_blur(uploaded_image, max_blur_value, scale_factor, num_layers):
|
|
|
|
|
|
|
|
|
46 |
if not isinstance(uploaded_image, Image.Image):
|
47 |
uploaded_image = Image.open(uploaded_image)
|
48 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
49 |
depth_map = compute_depth_map(image, scale_factor)
|
50 |
final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value)
|
51 |
return final_image
|
|
|
|
|
|
|
|
|
52 |
def create_heatmap(depth_map: np.ndarray, intensity: float) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
normalized = np.clip(depth_map * intensity, 0, 1)
|
54 |
colormap = cm.get_cmap("inferno")
|
55 |
+
colored = colormap(normalized)
|
56 |
+
heatmap = (colored[:, :, :3] * 255).astype(np.uint8)
|
57 |
return Image.fromarray(heatmap)
|
58 |
|
59 |
def process_depth_heatmap(uploaded_image, intensity):
|
|
|
|
|
|
|
|
|
60 |
if not isinstance(uploaded_image, Image.Image):
|
61 |
uploaded_image = Image.open(uploaded_image)
|
62 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
63 |
depth_map = compute_depth_map(image, scale_factor=1.0)
|
64 |
heatmap_img = create_heatmap(depth_map, intensity)
|
65 |
return heatmap_img
|
|
|
|
|
66 |
def load_segmentation_model():
|
|
|
|
|
|
|
|
|
67 |
global seg_model, seg_device
|
68 |
if "seg_model" not in globals():
|
69 |
from ben2 import BEN_Base # Import BEN2
|
|
|
73 |
return seg_model, seg_device
|
74 |
|
75 |
def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
|
|
|
|
|
|
|
|
|
|
|
76 |
if not isinstance(uploaded_image, Image.Image):
|
77 |
uploaded_image = Image.open(uploaded_image)
|
78 |
image = uploaded_image.convert("RGB").resize((512, 512))
|
79 |
seg_model, seg_device = load_segmentation_model()
|
80 |
blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius))
|
|
|
|
|
81 |
foreground = seg_model.inference(image, refine_foreground=False)
|
82 |
foreground_rgba = foreground.convert("RGBA")
|
83 |
_, _, _, alpha = foreground_rgba.split()
|
|
|
85 |
final_image = Image.composite(image, blurred_image, binary_mask)
|
86 |
return final_image
|
87 |
|
88 |
+
|
89 |
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("#Gaussian Blur & Lens Blur Effect")
|
91 |
with gr.Tabs():
|
92 |
+
with gr.Tab("Gaussian Blur"):
|
93 |
+
seg_img = gr.Image(type="pil", label="Upload Image")
|
94 |
+
seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius")
|
95 |
+
seg_out = gr.Image(label="Gaussian Blurred Image")
|
96 |
+
seg_button = gr.Button("Process Gaussian Blur")
|
97 |
+
seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out)
|
98 |
+
with gr.Tab("Lens Blur"):
|
99 |
img_input = gr.Image(type="pil", label="Upload Image")
|
100 |
blur_slider = gr.Slider(1, 50, value=6, label="Maximum Blur Radius")
|
101 |
scale_slider = gr.Slider(0.1, 2.0, value=0.72, label="Depth Scale Factor")
|
102 |
layers_slider = gr.Slider(2, 10, value=2.91, label="Number of Layers")
|
103 |
+
blur_output = gr.Image(label="Lens Blur Result")
|
104 |
+
blur_button = gr.Button("Process Blur")
|
105 |
blur_button.click(
|
106 |
process_depth_blur,
|
107 |
inputs=[img_input, blur_slider, scale_slider, layers_slider],
|
108 |
outputs=blur_output
|
109 |
)
|
110 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
if __name__ == "__main__":
|
|
|
113 |
demo.launch(share=True)
|