File size: 11,021 Bytes
648dea1 56f8447 b8994cd 93edcb3 648dea1 39b1f14 d03227a ca854bd c0dfc53 ca854bd 39b1f14 cce5718 648dea1 5fed4e8 648dea1 da1f0f6 ca854bd 39b1f14 648dea1 39b1f14 0d32d1f 648dea1 ca854bd 648dea1 5fed4e8 da1f0f6 0d32d1f 5fed4e8 0d32d1f da1f0f6 5fed4e8 0d32d1f 5fed4e8 da1f0f6 5fed4e8 648dea1 da1f0f6 0d32d1f 5fed4e8 648dea1 da1f0f6 648dea1 39b1f14 648dea1 56f8447 39b1f14 56f8447 648dea1 56f8447 648dea1 d03227a 648dea1 39b1f14 d03227a 39b1f14 648dea1 56f8447 39b1f14 56f8447 39b1f14 d03227a 39b1f14 56f8447 648dea1 39b1f14 648dea1 0d32d1f 39b1f14 0d32d1f 39b1f14 0d32d1f 39b1f14 0d32d1f 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 8275a49 39b1f14 648dea1 39b1f14 648dea1 39b1f14 648dea1 c13044d 648dea1 39b1f14 56f8447 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# ---------------------------------------------------------------------------------------
# Imports and Options
# ---------------------------------------------------------------------------------------
import streamlit as st
import pandas as pd
import requests
import re
import fitz # PyMuPDF
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
import torch
import os
from huggingface_hub import InferenceClient
# ---------------------------------------------------------------------------------------
# Streamlit Page Configuration
# ---------------------------------------------------------------------------------------
st.set_page_config(
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
page_icon=":bar_chart:",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'mailto:[email protected]',
'About': "This app is built to support PDF analysis"
}
)
# ---------------------------------------------------------------------------------------
# Streamlit Sidebar
# ---------------------------------------------------------------------------------------
st.sidebar.title("๐ About This App")
st.sidebar.markdown("""
#### โ ๏ธ **Important Note on Processing Time**
This app uses the **SmolDocling** model (`ds4sd/SmolDocling-256M-preview`) to convert PDF pages into markdown text. Currently, the model is running on a CPU-based environment (**CPU basic | 2 vCPU - 16 GB RAM**), and therefore processing each page can take a significant amount of time (approximately **6 minutes per page**).
**Note: It is recommended that you upload single-page PDFs, as testing showed approximately 6 minutes of processing time per page.**
This setup is suitable for testing and demonstration purposes, but **not efficient for real-world usage**.
For faster processing, consider running the optimized version `ds4sd/SmolDocling-256M-preview-mlx-bf16` locally on a MacBook, where it performs significantly faster.
---
#### ๐ ๏ธ **How This App Works**
Here's a quick overview of the workflow:
1. **Upload PDF**: You upload a PDF document using the uploader provided.
2. **Convert PDF to Images**: The PDF is converted into individual images (one per page).
3. **Extract Markdown from Images**: Each image is processed by the SmolDocling model to extract markdown-formatted text.
4. **Enter Topics and Descriptions**: You provide specific topics and their descriptions you'd like to extract from the document.
5. **Extract Excerpts**: The app uses the **meta-llama/Llama-3.1-70B-Instruct** model to extract exact quotes relevant to your provided topics.
6. **Results in a DataFrame**: All extracted quotes and their topics are compiled into a structured DataFrame that you can preview and download.
---
Please proceed by uploading your PDF file to begin the analysis.
""")
# ---------------------------------------------------------------------------------------
# Session State Initialization
# ---------------------------------------------------------------------------------------
for key in ['pdf_processed', 'markdown_texts', 'df']:
if key not in st.session_state:
st.session_state[key] = False if key == 'pdf_processed' else []
# ---------------------------------------------------------------------------------------
# API Configuration
# ---------------------------------------------------------------------------------------
hf_api_key = os.getenv('HF_API_KEY')
if not hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
client = InferenceClient(api_key=hf_api_key)
# ---------------------------------------------------------------------------------------
# Survey Analysis Class
# ---------------------------------------------------------------------------------------
class AIAnalysis:
def __init__(self, client):
self.client = client
def prepare_llm_input(self, document_content, topics):
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
return f"""Extract and summarize PDF notes based on topics:
{topic_descriptions}
Instructions:
- Extract exact quotes per topic.
- Ignore irrelevant topics.
- Strictly follow this format:
[Topic]
- "Exact quote"
Document Content:
{document_content}
"""
def prompt_response_from_hf_llm(self, llm_input):
system_prompt = """
You are an expert assistant tasked with extracting exact quotes from provided meeting notes based on given topics.
Instructions:
- Only extract exact quotes relevant to provided topics.
- Ignore irrelevant content.
- Strictly follow this format:
[Topic]
- "Exact quote"
"""
response = self.client.chat.completions.create(
model="meta-llama/Llama-3.1-70B-Instruct",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": llm_input}
],
stream=True,
temperature=0.5,
max_tokens=1024,
top_p=0.7
)
response_content = ""
for message in response:
# Correctly handle streaming response
response_content += message.choices[0].delta.content
print("Full AI Response:", response_content) # Debugging
return response_content.strip()
def extract_text(self, response):
return response
def process_dataframe(self, df, topics):
results = []
for _, row in df.iterrows():
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
response = self.prompt_response_from_hf_llm(llm_input)
notes = self.extract_text(response)
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
# ---------------------------------------------------------------------------------------
# Helper Functions
# ---------------------------------------------------------------------------------------
@st.cache_resource
def load_smol_docling():
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
).to(device)
return model, processor
model, processor = load_smol_docling()
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
images = []
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page in doc:
pix = page.get_pixmap(dpi=dpi)
img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
img.thumbnail((max_size, max_size), Image.LANCZOS)
images.append(img)
return images
def extract_markdown_from_image(image):
device = "cuda" if torch.cuda.is_available() else "cpu"
prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=1024)
doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
doc = DoclingDocument(name="ExtractedDocument")
doc.load_from_doctags(doctags_doc)
return doc.export_to_markdown()
# Revised extract_excerpts function with improved robustness
def extract_excerpts(processed_df):
rows = []
for _, r in processed_df.iterrows():
sections = re.split(r'\n(?=(?:\*\*|\[)?[A-Za-z/ ]+(?:\*\*|\])?\n- )', r['Topic_Summary'])
for sec in sections:
topic_match = re.match(r'(?:\*\*|\[)?([A-Za-z/ ]+)(?:\*\*|\])?', sec.strip())
if topic_match:
topic = topic_match.group(1).strip()
excerpts = re.findall(r'- "?([^"\n]+)"?', sec)
for excerpt in excerpts:
rows.append({
'Document_Text': r['Document_Text'],
'Topic_Summary': r['Topic_Summary'],
'Excerpt': excerpt.strip(),
'Topic': topic
})
print("Extracted Rows:", rows) # Debugging
return pd.DataFrame(rows)
# ---------------------------------------------------------------------------------------
# Streamlit UI
# ---------------------------------------------------------------------------------------
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
if uploaded_file and not st.session_state['pdf_processed']:
with st.spinner("Processing PDF..."):
images = convert_pdf_to_images(uploaded_file)
markdown_texts = [extract_markdown_from_image(img) for img in images]
st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
st.session_state['pdf_processed'] = True
st.success("PDF processed successfully!")
if st.session_state['pdf_processed']:
st.markdown("### Extracted Text Preview")
st.write(st.session_state['df'].head())
st.markdown("### Enter Topics and Descriptions")
num_topics = st.number_input("Number of topics", 1, 10, 1)
topics = {}
for i in range(num_topics):
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
if topic and desc:
topics[topic] = desc
if st.button("Run Analysis"):
if not topics:
st.warning("Please enter at least one topic and description.")
st.stop()
analyzer = AIAnalysis(client)
processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
extracted_df = extract_excerpts(processed_df)
st.markdown("### Extracted Excerpts")
st.dataframe(extracted_df)
csv = extracted_df.to_csv(index=False)
st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")
if not extracted_df.empty:
topic_counts = extracted_df['Topic'].value_counts()
fig, ax = plt.subplots()
topic_counts.plot.bar(ax=ax, color='#3d9aa1')
st.pyplot(fig)
else:
st.warning("No topics were extracted. Please check the input data and topics.")
if not uploaded_file:
st.info("Please upload a PDF file to begin.") |