Update app.py
Browse files
app.py
CHANGED
@@ -1,309 +1,3 @@
|
|
1 |
-
# # ---------------------------------------------------------------------------------------
|
2 |
-
# # Imports and Options
|
3 |
-
# # ---------------------------------------------------------------------------------------
|
4 |
-
# import streamlit as st
|
5 |
-
# import pandas as pd
|
6 |
-
# import requests
|
7 |
-
# import re
|
8 |
-
# import fitz # PyMuPDF
|
9 |
-
# import io
|
10 |
-
# import matplotlib.pyplot as plt
|
11 |
-
# from PIL import Image
|
12 |
-
# from mlx_vlm import load, generate
|
13 |
-
# from mlx_vlm.prompt_utils import apply_chat_template
|
14 |
-
# from mlx_vlm.utils import load_config, stream_generate
|
15 |
-
# from docling_core.types.doc.document import DocTagsDocument, DoclingDocument
|
16 |
-
|
17 |
-
# # Set Streamlit to wide mode
|
18 |
-
# # st.set_page_config(layout="wide")
|
19 |
-
|
20 |
-
# # ---------------------------------------------------------------------------------------
|
21 |
-
# # API Configuration
|
22 |
-
# # ---------------------------------------------------------------------------------------
|
23 |
-
# API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
|
24 |
-
# headers = {
|
25 |
-
# 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
|
26 |
-
# 'Content-Type': 'application/json'
|
27 |
-
# }
|
28 |
-
|
29 |
-
# # ---------------------------------------------------------------------------------------
|
30 |
-
# # Survey Analysis Class
|
31 |
-
# # ---------------------------------------------------------------------------------------
|
32 |
-
# class SurveyAnalysis:
|
33 |
-
# def __init__(self, api_key=None):
|
34 |
-
# self.api_key = api_key
|
35 |
-
|
36 |
-
# def prepare_llm_input(self, survey_response, topics):
|
37 |
-
# # Create topic description string from user input
|
38 |
-
# topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()])
|
39 |
-
|
40 |
-
# llm_input = f"""
|
41 |
-
# Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
|
42 |
-
|
43 |
-
# {topic_descriptions}
|
44 |
-
|
45 |
-
# **Instructions:**
|
46 |
-
# - Extract and summarize the PDF focusing only on the provided topics.
|
47 |
-
# - If a topic is not mentioned in the notes, it should not be included in the Topic_Summary.
|
48 |
-
# - Use **exact quotes** from the original text for each point in your Topic_Summary.
|
49 |
-
# - Exclude erroneous content.
|
50 |
-
# - Do not add additional explanations or instructions.
|
51 |
-
|
52 |
-
# **Format your response as follows:**
|
53 |
-
# [Topic]
|
54 |
-
# - "Exact quote"
|
55 |
-
# - "Exact quote"
|
56 |
-
# - "Exact quote"
|
57 |
-
|
58 |
-
# **Meeting Notes:**
|
59 |
-
# {survey_response}
|
60 |
-
# """
|
61 |
-
# return llm_input
|
62 |
-
|
63 |
-
# def query_api(self, payload):
|
64 |
-
# response = requests.post(API_URL, headers=headers, json=payload)
|
65 |
-
# return response.json()
|
66 |
-
|
67 |
-
# def extract_meeting_notes(self, response):
|
68 |
-
# output = response.get('outputs', {}).get('out-0', '')
|
69 |
-
# return output
|
70 |
-
|
71 |
-
# def process_dataframe(self, df, topics):
|
72 |
-
# results = []
|
73 |
-
# for _, row in df.iterrows():
|
74 |
-
# llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
75 |
-
# payload = {
|
76 |
-
# "user_id": "<USER or Conversation ID>",
|
77 |
-
# "in-0": llm_input
|
78 |
-
# }
|
79 |
-
# response = self.query_api(payload)
|
80 |
-
# meeting_notes = self.extract_meeting_notes(response)
|
81 |
-
# results.append({
|
82 |
-
# 'Document_Text': row['Document_Text'],
|
83 |
-
# 'Topic_Summary': meeting_notes
|
84 |
-
# })
|
85 |
-
|
86 |
-
# result_df = pd.DataFrame(results)
|
87 |
-
# df = df.reset_index(drop=True)
|
88 |
-
# return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
|
89 |
-
|
90 |
-
# # ---------------------------------------------------------------------------------------
|
91 |
-
# # Function to Extract Excerpts
|
92 |
-
# # ---------------------------------------------------------------------------------------
|
93 |
-
# def extract_excerpts(processed_df):
|
94 |
-
# new_rows = []
|
95 |
-
|
96 |
-
# for _, row in processed_df.iterrows():
|
97 |
-
# Topic_Summary = row['Topic_Summary']
|
98 |
-
|
99 |
-
# # Split the Topic_Summary by topic
|
100 |
-
# sections = re.split(r'\n(?=\[)', Topic_Summary)
|
101 |
-
|
102 |
-
# for section in sections:
|
103 |
-
# # Extract the topic
|
104 |
-
# topic_match = re.match(r'\[([^\]]+)\]', section)
|
105 |
-
# if topic_match:
|
106 |
-
# topic = topic_match.group(1)
|
107 |
-
|
108 |
-
# # Extract all excerpts within the section
|
109 |
-
# excerpts = re.findall(r'- "([^"]+)"', section)
|
110 |
-
|
111 |
-
# for excerpt in excerpts:
|
112 |
-
# new_rows.append({
|
113 |
-
# 'Document_Text': row['Document_Text'],
|
114 |
-
# 'Topic_Summary': row['Topic_Summary'],
|
115 |
-
# 'Excerpt': excerpt,
|
116 |
-
# 'Topic': topic
|
117 |
-
# })
|
118 |
-
|
119 |
-
# return pd.DataFrame(new_rows)
|
120 |
-
|
121 |
-
# #------------------------------------------------------------------------
|
122 |
-
# # Streamlit Configuration
|
123 |
-
# #------------------------------------------------------------------------
|
124 |
-
|
125 |
-
# # Set page configuration
|
126 |
-
# st.set_page_config(
|
127 |
-
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
|
128 |
-
# page_icon=":bar_chart:",
|
129 |
-
# layout="centered",
|
130 |
-
# initial_sidebar_state="auto",
|
131 |
-
# menu_items={
|
132 |
-
# 'Get Help': 'mailto:[email protected]',
|
133 |
-
# 'About': "This app is built to support PDF analysis"
|
134 |
-
# }
|
135 |
-
# )
|
136 |
-
|
137 |
-
# #------------------------------------------------------------------------
|
138 |
-
# # Sidebar
|
139 |
-
# #------------------------------------------------------------------------
|
140 |
-
|
141 |
-
# # Sidebar with image
|
142 |
-
# with st.sidebar:
|
143 |
-
# # Set the desired width in pixels
|
144 |
-
# image_width = 300
|
145 |
-
# # Define the path to the image
|
146 |
-
# # image_path = "steelcase_small.png"
|
147 |
-
# image_path = "mtss.ai_small.png"
|
148 |
-
# # Display the image
|
149 |
-
# st.image(image_path, width=image_width)
|
150 |
-
|
151 |
-
# # Additional sidebar content
|
152 |
-
|
153 |
-
# with st.expander("**MTSS.ai**", expanded=True):
|
154 |
-
# st.write("""
|
155 |
-
# - **Support**: Cheyne LeVesseur PhD
|
156 |
-
# - **Email**: [email protected]
|
157 |
-
# """)
|
158 |
-
# st.divider()
|
159 |
-
# st.subheader('Instructions')
|
160 |
-
|
161 |
-
# Instructions = """
|
162 |
-
# - **Step 1**: Upload your PDF file.
|
163 |
-
# - **Step 2**: Review the processed text.
|
164 |
-
# - **Step 3**: Add your topics and descriptions of interest.
|
165 |
-
# - **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
|
166 |
-
# - **Step 5**: Review bar charts of topics.
|
167 |
-
# - **Step 6**: Download the processed data as a CSV file.
|
168 |
-
# """
|
169 |
-
# st.markdown(Instructions)
|
170 |
-
|
171 |
-
# # Load SmolDocling model ()
|
172 |
-
# @st.cache_resource
|
173 |
-
# def load_smol_docling():
|
174 |
-
# model_path = "ds4sd/SmolDocling-256M-preview"
|
175 |
-
# model, processor = load(model_path)
|
176 |
-
# config = load_config(model_path)
|
177 |
-
# return model, processor, config
|
178 |
-
|
179 |
-
# model, processor, config = load_smol_docling()
|
180 |
-
|
181 |
-
# # Convert PDF to images
|
182 |
-
# def convert_pdf_to_images(pdf_file):
|
183 |
-
# images = []
|
184 |
-
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
185 |
-
# for page_number in range(len(doc)):
|
186 |
-
# page = doc.load_page(page_number)
|
187 |
-
# pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
|
188 |
-
# img_data = pix.tobytes("png")
|
189 |
-
# image = Image.open(io.BytesIO(img_data))
|
190 |
-
# images.append(image)
|
191 |
-
# return images
|
192 |
-
|
193 |
-
# # Extract structured markdown text using SmolDocling (mlx_vlm)
|
194 |
-
# def extract_markdown_from_image(image):
|
195 |
-
# prompt = "Convert this page to docling."
|
196 |
-
# formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1)
|
197 |
-
# output = ""
|
198 |
-
|
199 |
-
# for token in stream_generate(
|
200 |
-
# model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False):
|
201 |
-
# output += token.text
|
202 |
-
# if "</doctag>" in token.text:
|
203 |
-
# break
|
204 |
-
|
205 |
-
# # Convert DocTags to Markdown
|
206 |
-
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image])
|
207 |
-
# doc = DoclingDocument(name="ExtractedDocument")
|
208 |
-
# doc.load_from_doctags(doctags_doc)
|
209 |
-
# markdown_text = doc.export_to_markdown()
|
210 |
-
# return markdown_text
|
211 |
-
|
212 |
-
# # Streamlit UI
|
213 |
-
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
|
214 |
-
|
215 |
-
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
216 |
-
|
217 |
-
# if uploaded_file:
|
218 |
-
# with st.spinner("Processing PDF..."):
|
219 |
-
# images = convert_pdf_to_images(uploaded_file)
|
220 |
-
|
221 |
-
# markdown_texts = []
|
222 |
-
# for idx, image in enumerate(images):
|
223 |
-
# markdown_text = extract_markdown_from_image(image)
|
224 |
-
# markdown_texts.append(markdown_text)
|
225 |
-
|
226 |
-
# df = pd.DataFrame({'Document_Text': markdown_texts})
|
227 |
-
|
228 |
-
# st.success("PDF processed successfully!")
|
229 |
-
|
230 |
-
# # Check if extraction was successful
|
231 |
-
# if df.empty or df['Document_Text'].isnull().all():
|
232 |
-
# st.error("No meaningful text extracted from the PDF.")
|
233 |
-
# st.stop()
|
234 |
-
|
235 |
-
# st.markdown("### Extracted Markdown Preview")
|
236 |
-
# st.write(df.head())
|
237 |
-
|
238 |
-
# # ---------------------------------------------------------------------------------------
|
239 |
-
# # User Input for Topics
|
240 |
-
# # ---------------------------------------------------------------------------------------
|
241 |
-
# st.markdown("### Enter Topics and Descriptions")
|
242 |
-
# num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1)
|
243 |
-
|
244 |
-
# topics = {}
|
245 |
-
# for i in range(num_topics):
|
246 |
-
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
|
247 |
-
# description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
|
248 |
-
# if topic and description:
|
249 |
-
# topics[topic] = description
|
250 |
-
|
251 |
-
# # Add a button to execute the analysis
|
252 |
-
# if st.button("Run Analysis"):
|
253 |
-
# if not topics:
|
254 |
-
# st.warning("Please enter at least one topic and description.")
|
255 |
-
# st.stop()
|
256 |
-
|
257 |
-
# # ---------------------------------------------------------------------------------------
|
258 |
-
# # Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
|
259 |
-
# # ---------------------------------------------------------------------------------------
|
260 |
-
# analyzer = SurveyAnalysis()
|
261 |
-
# processed_df = analyzer.process_dataframe(df, topics)
|
262 |
-
# df_VIP_extracted = extract_excerpts(processed_df)
|
263 |
-
|
264 |
-
# required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
|
265 |
-
# missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
|
266 |
-
|
267 |
-
# if missing_columns:
|
268 |
-
# st.error(f"Missing columns after processing: {missing_columns}")
|
269 |
-
# st.stop()
|
270 |
-
|
271 |
-
# df_VIP_extracted = df_VIP_extracted[required_columns]
|
272 |
-
|
273 |
-
# st.markdown("### Processed Meeting Notes")
|
274 |
-
# st.dataframe(df_VIP_extracted)
|
275 |
-
|
276 |
-
# st.write(f"**Number of meeting notes analyzed:** {len(df)}")
|
277 |
-
# st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
|
278 |
-
|
279 |
-
# # CSV download
|
280 |
-
# csv = df_VIP_extracted.to_csv(index=False)
|
281 |
-
# st.download_button(
|
282 |
-
# "Download data as CSV",
|
283 |
-
# data=csv,
|
284 |
-
# file_name='extracted_meeting_notes.csv',
|
285 |
-
# mime='text/csv'
|
286 |
-
# )
|
287 |
-
|
288 |
-
# # Topic distribution visualization
|
289 |
-
# topic_counts = df_VIP_extracted['Topic'].value_counts()
|
290 |
-
# frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
|
291 |
-
# frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
|
292 |
-
|
293 |
-
# st.markdown("### Topic Distribution")
|
294 |
-
# st.dataframe(frequency_table)
|
295 |
-
|
296 |
-
# fig, ax = plt.subplots(figsize=(10, 5))
|
297 |
-
# ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
|
298 |
-
# ax.set_ylabel('Count')
|
299 |
-
# ax.set_title('Frequency of Topics')
|
300 |
-
# st.pyplot(fig)
|
301 |
-
|
302 |
-
# else:
|
303 |
-
# st.info("Please upload a PDF file to begin.")
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
# ---------------------------------------------------------------------------------------
|
308 |
# Imports and Options
|
309 |
# ---------------------------------------------------------------------------------------
|
@@ -320,6 +14,9 @@ from docling_core.types.doc import DoclingDocument
|
|
320 |
from docling_core.types.doc.document import DocTagsDocument
|
321 |
import torch
|
322 |
|
|
|
|
|
|
|
323 |
# ---------------------------------------------------------------------------------------
|
324 |
# API Configuration
|
325 |
# ---------------------------------------------------------------------------------------
|
@@ -484,54 +181,93 @@ def load_smol_docling():
|
|
484 |
|
485 |
model, processor = load_smol_docling()
|
486 |
|
487 |
-
# Convert PDF to images
|
488 |
-
def convert_pdf_to_images(pdf_file):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
images = []
|
490 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
491 |
for page_number in range(len(doc)):
|
492 |
page = doc.load_page(page_number)
|
493 |
-
pix = page.get_pixmap(dpi=
|
494 |
img_data = pix.tobytes("png")
|
495 |
-
image = Image.open(io.BytesIO(img_data))
|
|
|
|
|
496 |
images.append(image)
|
497 |
return images
|
498 |
|
499 |
# Extract structured markdown text using SmolDocling (transformers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
def extract_markdown_from_image(image):
|
|
|
501 |
prompt_text = "Convert this page to docling."
|
502 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
503 |
|
504 |
-
|
505 |
-
messages = [
|
506 |
-
{
|
507 |
-
"role": "user",
|
508 |
-
"content": [
|
509 |
-
{"type": "image"},
|
510 |
-
{"type": "text", "text": prompt_text}
|
511 |
-
]
|
512 |
-
}
|
513 |
-
]
|
514 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
515 |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
516 |
|
517 |
-
#
|
518 |
-
|
|
|
519 |
prompt_length = inputs.input_ids.shape[1]
|
520 |
trimmed_generated_ids = generated_ids[:, prompt_length:]
|
521 |
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
|
522 |
-
|
523 |
-
# Clean the output
|
524 |
doctags = doctags.replace("<end_of_utterance>", "").strip()
|
525 |
|
526 |
-
# Populate document
|
527 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
528 |
-
|
529 |
-
# Create a docling document
|
530 |
doc = DoclingDocument(name="ExtractedDocument")
|
531 |
doc.load_from_doctags(doctags_doc)
|
532 |
-
|
533 |
-
# Export as markdown
|
534 |
markdown_text = doc.export_to_markdown()
|
|
|
|
|
535 |
return markdown_text
|
536 |
|
537 |
# Streamlit UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# ---------------------------------------------------------------------------------------
|
2 |
# Imports and Options
|
3 |
# ---------------------------------------------------------------------------------------
|
|
|
14 |
from docling_core.types.doc.document import DocTagsDocument
|
15 |
import torch
|
16 |
|
17 |
+
import logging
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
|
20 |
# ---------------------------------------------------------------------------------------
|
21 |
# API Configuration
|
22 |
# ---------------------------------------------------------------------------------------
|
|
|
181 |
|
182 |
model, processor = load_smol_docling()
|
183 |
|
184 |
+
# # Convert PDF to images
|
185 |
+
# def convert_pdf_to_images(pdf_file):
|
186 |
+
# images = []
|
187 |
+
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
188 |
+
# for page_number in range(len(doc)):
|
189 |
+
# page = doc.load_page(page_number)
|
190 |
+
# pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
|
191 |
+
# img_data = pix.tobytes("png")
|
192 |
+
# image = Image.open(io.BytesIO(img_data))
|
193 |
+
# images.append(image)
|
194 |
+
# return images
|
195 |
+
|
196 |
+
# Improved PDF to image conversion
|
197 |
+
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
|
198 |
images = []
|
199 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
200 |
for page_number in range(len(doc)):
|
201 |
page = doc.load_page(page_number)
|
202 |
+
pix = page.get_pixmap(dpi=dpi)
|
203 |
img_data = pix.tobytes("png")
|
204 |
+
image = Image.open(io.BytesIO(img_data)).convert("RGB")
|
205 |
+
# Resize image to max dimension
|
206 |
+
image.thumbnail((max_size, max_size), Image.LANCZOS)
|
207 |
images.append(image)
|
208 |
return images
|
209 |
|
210 |
# Extract structured markdown text using SmolDocling (transformers)
|
211 |
+
# def extract_markdown_from_image(image):
|
212 |
+
# prompt_text = "Convert this page to docling."
|
213 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
214 |
+
|
215 |
+
# # Prepare inputs
|
216 |
+
# messages = [
|
217 |
+
# {
|
218 |
+
# "role": "user",
|
219 |
+
# "content": [
|
220 |
+
# {"type": "image"},
|
221 |
+
# {"type": "text", "text": prompt_text}
|
222 |
+
# ]
|
223 |
+
# }
|
224 |
+
# ]
|
225 |
+
# prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
226 |
+
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
227 |
+
|
228 |
+
# # Generate outputs
|
229 |
+
# generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
230 |
+
# prompt_length = inputs.input_ids.shape[1]
|
231 |
+
# trimmed_generated_ids = generated_ids[:, prompt_length:]
|
232 |
+
# doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
|
233 |
+
|
234 |
+
# # Clean the output
|
235 |
+
# doctags = doctags.replace("<end_of_utterance>", "").strip()
|
236 |
+
|
237 |
+
# # Populate document
|
238 |
+
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
239 |
+
|
240 |
+
# # Create a docling document
|
241 |
+
# doc = DoclingDocument(name="ExtractedDocument")
|
242 |
+
# doc.load_from_doctags(doctags_doc)
|
243 |
+
|
244 |
+
# # Export as markdown
|
245 |
+
# markdown_text = doc.export_to_markdown()
|
246 |
+
# return markdown_text
|
247 |
+
|
248 |
def extract_markdown_from_image(image):
|
249 |
+
start_time = time.time()
|
250 |
prompt_text = "Convert this page to docling."
|
251 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
252 |
|
253 |
+
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
255 |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
256 |
|
257 |
+
with torch.no_grad(): # <-- Crucial for speed
|
258 |
+
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
259 |
+
|
260 |
prompt_length = inputs.input_ids.shape[1]
|
261 |
trimmed_generated_ids = generated_ids[:, prompt_length:]
|
262 |
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
|
|
|
|
|
263 |
doctags = doctags.replace("<end_of_utterance>", "").strip()
|
264 |
|
|
|
265 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
|
|
|
|
266 |
doc = DoclingDocument(name="ExtractedDocument")
|
267 |
doc.load_from_doctags(doctags_doc)
|
|
|
|
|
268 |
markdown_text = doc.export_to_markdown()
|
269 |
+
processing_time = time.time() - start_time
|
270 |
+
logging.info(f"Inference took {processing_time:.2f} seconds")
|
271 |
return markdown_text
|
272 |
|
273 |
# Streamlit UI
|