Update app.py
Browse files
app.py
CHANGED
@@ -1,264 +1,3 @@
|
|
1 |
-
# # ---------------------------------------------------------------------------------------
|
2 |
-
# # Imports and Options
|
3 |
-
# # ---------------------------------------------------------------------------------------
|
4 |
-
# import streamlit as st
|
5 |
-
# import pandas as pd
|
6 |
-
# import requests
|
7 |
-
# import re
|
8 |
-
# import fitz # PyMuPDF
|
9 |
-
# import io
|
10 |
-
# import matplotlib.pyplot as plt
|
11 |
-
# from PIL import Image
|
12 |
-
# from transformers import AutoProcessor, AutoModelForVision2Seq
|
13 |
-
# from docling_core.types.doc import DoclingDocument
|
14 |
-
# from docling_core.types.doc.document import DocTagsDocument
|
15 |
-
# import torch
|
16 |
-
# import os
|
17 |
-
# from huggingface_hub import InferenceClient
|
18 |
-
|
19 |
-
# # ---------------------------------------------------------------------------------------
|
20 |
-
# # Streamlit Page Configuration
|
21 |
-
# # ---------------------------------------------------------------------------------------
|
22 |
-
# st.set_page_config(
|
23 |
-
# page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
|
24 |
-
# page_icon=":bar_chart:",
|
25 |
-
# layout="centered",
|
26 |
-
# initial_sidebar_state="auto",
|
27 |
-
# menu_items={
|
28 |
-
# 'Get Help': 'mailto:[email protected]',
|
29 |
-
# 'About': "This app is built to support PDF analysis"
|
30 |
-
# }
|
31 |
-
# )
|
32 |
-
|
33 |
-
# # ---------------------------------------------------------------------------------------
|
34 |
-
# # Session State Initialization
|
35 |
-
# # ---------------------------------------------------------------------------------------
|
36 |
-
# for key in ['pdf_processed', 'markdown_texts', 'df']:
|
37 |
-
# if key not in st.session_state:
|
38 |
-
# st.session_state[key] = False if key == 'pdf_processed' else []
|
39 |
-
|
40 |
-
# # ---------------------------------------------------------------------------------------
|
41 |
-
# # API Configuration
|
42 |
-
# # ---------------------------------------------------------------------------------------
|
43 |
-
# # API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7"
|
44 |
-
# # headers = {
|
45 |
-
# # 'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805',
|
46 |
-
# # 'Content-Type': 'application/json'
|
47 |
-
# # }
|
48 |
-
|
49 |
-
# # Retrieve Hugging Face API key from environment variables
|
50 |
-
# hf_api_key = os.getenv('HF_API_KEY')
|
51 |
-
# if not hf_api_key:
|
52 |
-
# raise ValueError("HF_API_KEY not set in environment variables")
|
53 |
-
|
54 |
-
# # Create the Hugging Face inference client
|
55 |
-
# client = InferenceClient(api_key=hf_api_key)
|
56 |
-
|
57 |
-
# # # ---------------------------------------------------------------------------------------
|
58 |
-
# # # Survey Analysis Class
|
59 |
-
# # # ---------------------------------------------------------------------------------------
|
60 |
-
# # class SurveyAnalysis:
|
61 |
-
# # def prepare_llm_input(self, survey_response, topics):
|
62 |
-
# # topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
63 |
-
# # return f"""Extract and summarize PDF notes based on topics:
|
64 |
-
# # {topic_descriptions}
|
65 |
-
|
66 |
-
# # Instructions:
|
67 |
-
# # - Extract exact quotes per topic.
|
68 |
-
# # - Ignore irrelevant topics.
|
69 |
-
|
70 |
-
# # Format:
|
71 |
-
# # [Topic]
|
72 |
-
# # - "Exact quote"
|
73 |
-
|
74 |
-
# # Meeting Notes:
|
75 |
-
# # {survey_response}
|
76 |
-
# # """
|
77 |
-
|
78 |
-
# # def query_api(self, payload):
|
79 |
-
# # try:
|
80 |
-
# # res = requests.post(API_URL, headers=headers, json=payload, timeout=60)
|
81 |
-
# # res.raise_for_status()
|
82 |
-
# # return res.json()
|
83 |
-
# # except requests.exceptions.RequestException as e:
|
84 |
-
# # st.error(f"API request failed: {e}")
|
85 |
-
# # return {'outputs': {'out-0': ''}}
|
86 |
-
|
87 |
-
# # def extract_meeting_notes(self, response):
|
88 |
-
# # return response.get('outputs', {}).get('out-0', '')
|
89 |
-
|
90 |
-
# # def process_dataframe(self, df, topics):
|
91 |
-
# # results = []
|
92 |
-
# # for _, row in df.iterrows():
|
93 |
-
# # llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
94 |
-
# # payload = {"user_id": "user", "in-0": llm_input}
|
95 |
-
# # response = self.query_api(payload)
|
96 |
-
# # notes = self.extract_meeting_notes(response)
|
97 |
-
# # results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
98 |
-
# # return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
99 |
-
|
100 |
-
# # ---------------------------------------------------------------------------------------
|
101 |
-
# # Survey Analysis Class
|
102 |
-
# # ---------------------------------------------------------------------------------------
|
103 |
-
# class SurveyAnalysis:
|
104 |
-
# def prepare_llm_input(self, survey_response, topics):
|
105 |
-
# topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
106 |
-
# return f"""Extract and summarize PDF notes based on topics:
|
107 |
-
# {topic_descriptions}
|
108 |
-
|
109 |
-
# Instructions:
|
110 |
-
# - Extract exact quotes per topic.
|
111 |
-
# - Ignore irrelevant topics.
|
112 |
-
|
113 |
-
# Format:
|
114 |
-
# [Topic]
|
115 |
-
# - "Exact quote"
|
116 |
-
|
117 |
-
# Meeting Notes:
|
118 |
-
# {survey_response}
|
119 |
-
# """
|
120 |
-
|
121 |
-
# def prompt_response_from_hf_llm(self, llm_input):
|
122 |
-
# # Define a system prompt to guide the model's responses
|
123 |
-
# system_prompt = """
|
124 |
-
# <Persona> An expert Implementation Specialist at Michigan's Multi-Tiered System of Support Technical Assistance Center (MiMTSS TA Center) with deep expertise in SWPBIS, SEL, Structured Literacy, Science of Reading, and family engagement practices.</Persona>
|
125 |
-
# <Task> Analyze educational data and provide evidence-based recommendations for improving student outcomes across multiple tiers of support, drawing from established frameworks in behavioral interventions, literacy instruction, and family engagement.</Task>
|
126 |
-
# <Context> Operating within Michigan's educational system to support schools in implementing multi-tiered support systems, with access to student metrics data and knowledge of state-specific educational requirements and MTSS frameworks. </Context>
|
127 |
-
# <Format> Deliver insights through clear, actionable recommendations supported by data analysis, incorporating technical expertise while maintaining accessibility for educators and administrators at various levels of MTSS implementation.</Format>
|
128 |
-
# """
|
129 |
-
|
130 |
-
# # Generate the refined prompt using Hugging Face API
|
131 |
-
# response = client.chat.completions.create(
|
132 |
-
# model="meta-llama/Llama-3.1-70B-Instruct",
|
133 |
-
# messages=[
|
134 |
-
# {"role": "system", "content": system_prompt}, # Add system prompt here
|
135 |
-
# {"role": "user", "content": llm_input}
|
136 |
-
# ],
|
137 |
-
# stream=True,
|
138 |
-
# temperature=0.5,
|
139 |
-
# max_tokens=1024,
|
140 |
-
# top_p=0.7
|
141 |
-
# )
|
142 |
-
|
143 |
-
# # Combine messages if response is streamed
|
144 |
-
# response_content = ""
|
145 |
-
# for message in response:
|
146 |
-
# response_content += message.choices[0].delta.content
|
147 |
-
|
148 |
-
# return response_content.strip()
|
149 |
-
|
150 |
-
# def extract_text(self, response):
|
151 |
-
# return response
|
152 |
-
|
153 |
-
# def process_dataframe(self, df, topics):
|
154 |
-
# results = []
|
155 |
-
# for _, row in df.iterrows():
|
156 |
-
# llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
157 |
-
# response = self.prompt_response_from_hf_llm(llm_input)
|
158 |
-
# notes = self.extract_text(response)
|
159 |
-
# results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
160 |
-
# return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
161 |
-
|
162 |
-
# # ---------------------------------------------------------------------------------------
|
163 |
-
# # Helper Functions
|
164 |
-
# # ---------------------------------------------------------------------------------------
|
165 |
-
# @st.cache_resource
|
166 |
-
# def load_smol_docling():
|
167 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
168 |
-
# processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
169 |
-
# model = AutoModelForVision2Seq.from_pretrained(
|
170 |
-
# "ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
|
171 |
-
# ).to(device)
|
172 |
-
# return model, processor
|
173 |
-
|
174 |
-
# model, processor = load_smol_docling()
|
175 |
-
|
176 |
-
# def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
|
177 |
-
# images = []
|
178 |
-
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
179 |
-
# for page in doc:
|
180 |
-
# pix = page.get_pixmap(dpi=dpi)
|
181 |
-
# img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
|
182 |
-
# img.thumbnail((max_size, max_size), Image.LANCZOS)
|
183 |
-
# images.append(img)
|
184 |
-
# return images
|
185 |
-
|
186 |
-
# def extract_markdown_from_image(image):
|
187 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
188 |
-
# prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
|
189 |
-
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
190 |
-
# with torch.no_grad():
|
191 |
-
# generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
192 |
-
# doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
|
193 |
-
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
194 |
-
# doc = DoclingDocument(name="ExtractedDocument")
|
195 |
-
# doc.load_from_doctags(doctags_doc)
|
196 |
-
# return doc.export_to_markdown()
|
197 |
-
|
198 |
-
# def extract_excerpts(processed_df):
|
199 |
-
# rows = []
|
200 |
-
# for _, r in processed_df.iterrows():
|
201 |
-
# for sec in re.split(r'\n(?=\[)', r['Topic_Summary']):
|
202 |
-
# topic_match = re.match(r'\[([^\]]+)\]', sec)
|
203 |
-
# if topic_match:
|
204 |
-
# topic = topic_match.group(1)
|
205 |
-
# excerpts = re.findall(r'- "([^"]+)"', sec)
|
206 |
-
# for excerpt in excerpts:
|
207 |
-
# rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic})
|
208 |
-
# return pd.DataFrame(rows)
|
209 |
-
|
210 |
-
# # ---------------------------------------------------------------------------------------
|
211 |
-
# # Streamlit UI
|
212 |
-
# # ---------------------------------------------------------------------------------------
|
213 |
-
# st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
|
214 |
-
|
215 |
-
# uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
216 |
-
|
217 |
-
# if uploaded_file and not st.session_state['pdf_processed']:
|
218 |
-
# with st.spinner("Processing PDF..."):
|
219 |
-
# images = convert_pdf_to_images(uploaded_file)
|
220 |
-
# markdown_texts = [extract_markdown_from_image(img) for img in images]
|
221 |
-
# st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
|
222 |
-
# st.session_state['pdf_processed'] = True
|
223 |
-
# st.success("PDF processed successfully!")
|
224 |
-
|
225 |
-
# if st.session_state['pdf_processed']:
|
226 |
-
# st.markdown("### Extracted Text Preview")
|
227 |
-
# st.write(st.session_state['df'].head())
|
228 |
-
|
229 |
-
# st.markdown("### Enter Topics and Descriptions")
|
230 |
-
# num_topics = st.number_input("Number of topics", 1, 10, 1)
|
231 |
-
# topics = {}
|
232 |
-
# for i in range(num_topics):
|
233 |
-
# topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
|
234 |
-
# desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
|
235 |
-
# if topic and desc:
|
236 |
-
# topics[topic] = desc
|
237 |
-
|
238 |
-
# if st.button("Run Analysis"):
|
239 |
-
# if not topics:
|
240 |
-
# st.warning("Please enter at least one topic and description.")
|
241 |
-
# st.stop()
|
242 |
-
|
243 |
-
# analyzer = SurveyAnalysis()
|
244 |
-
# processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
|
245 |
-
# extracted_df = extract_excerpts(processed_df)
|
246 |
-
|
247 |
-
# st.markdown("### Extracted Excerpts")
|
248 |
-
# st.dataframe(extracted_df)
|
249 |
-
|
250 |
-
# csv = extracted_df.to_csv(index=False)
|
251 |
-
# st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")
|
252 |
-
|
253 |
-
# topic_counts = extracted_df['Topic'].value_counts()
|
254 |
-
# fig, ax = plt.subplots()
|
255 |
-
# topic_counts.plot.bar(ax=ax, color='#3d9aa1')
|
256 |
-
# st.pyplot(fig)
|
257 |
-
|
258 |
-
# if not uploaded_file:
|
259 |
-
# st.info("Please upload a PDF file to begin.")
|
260 |
-
|
261 |
-
|
262 |
# ---------------------------------------------------------------------------------------
|
263 |
# Imports and Options
|
264 |
# ---------------------------------------------------------------------------------------
|
@@ -291,6 +30,39 @@ st.set_page_config(
|
|
291 |
}
|
292 |
)
|
293 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
# ---------------------------------------------------------------------------------------
|
295 |
# Session State Initialization
|
296 |
# ---------------------------------------------------------------------------------------
|
@@ -314,7 +86,7 @@ class AIAnalysis:
|
|
314 |
def __init__(self, client):
|
315 |
self.client = client
|
316 |
|
317 |
-
def prepare_llm_input(self,
|
318 |
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
319 |
return f"""Extract and summarize PDF notes based on topics:
|
320 |
{topic_descriptions}
|
@@ -327,8 +99,8 @@ Instructions:
|
|
327 |
[Topic]
|
328 |
- "Exact quote"
|
329 |
|
330 |
-
|
331 |
-
{
|
332 |
"""
|
333 |
|
334 |
def prompt_response_from_hf_llm(self, llm_input):
|
@@ -376,15 +148,6 @@ Meeting Notes:
|
|
376 |
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
377 |
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
378 |
|
379 |
-
def process_dataframe(self, df, topics):
|
380 |
-
results = []
|
381 |
-
for _, row in df.iterrows():
|
382 |
-
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
383 |
-
response = self.prompt_response_from_hf_llm(llm_input)
|
384 |
-
notes = self.extract_text(response)
|
385 |
-
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
386 |
-
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
387 |
-
|
388 |
# ---------------------------------------------------------------------------------------
|
389 |
# Helper Functions
|
390 |
# ---------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# ---------------------------------------------------------------------------------------
|
2 |
# Imports and Options
|
3 |
# ---------------------------------------------------------------------------------------
|
|
|
30 |
}
|
31 |
)
|
32 |
|
33 |
+
# ---------------------------------------------------------------------------------------
|
34 |
+
# Streamlit Sidebar
|
35 |
+
# ---------------------------------------------------------------------------------------
|
36 |
+
|
37 |
+
st.sidebar.title("📌 About This App")
|
38 |
+
|
39 |
+
st.sidebar.markdown("""
|
40 |
+
#### ⚠️ **Important Note on Processing Time**
|
41 |
+
|
42 |
+
This app uses the **SmolDocling** model (`ds4sd/SmolDocling-256M-preview`) to convert PDF pages into markdown text. Currently, the model is running on a CPU-based environment (**CPU basic | 2 vCPU - 16 GB RAM**), and therefore processing each page can take a significant amount of time (approximately **6 minutes per page**).
|
43 |
+
|
44 |
+
This setup is suitable for testing and demonstration purposes, but **not efficient for real-world usage**.
|
45 |
+
|
46 |
+
For faster processing, consider running the optimized version `ds4sd/SmolDocling-256M-preview-mlx-bf16` locally on a MacBook, where it performs significantly faster.
|
47 |
+
|
48 |
+
---
|
49 |
+
|
50 |
+
#### 🛠️ **How This App Works**
|
51 |
+
|
52 |
+
Here's a quick overview of the workflow:
|
53 |
+
|
54 |
+
1. **Upload PDF**: You upload a PDF document using the uploader provided.
|
55 |
+
2. **Convert PDF to Images**: The PDF is converted into individual images (one per page).
|
56 |
+
3. **Extract Markdown from Images**: Each image is processed by the SmolDocling model to extract markdown-formatted text.
|
57 |
+
4. **Enter Topics and Descriptions**: You provide specific topics and their descriptions you'd like to extract from the document.
|
58 |
+
5. **Extract Excerpts**: The app uses the **meta-llama/Llama-3.1-70B-Instruct** model to extract exact quotes relevant to your provided topics.
|
59 |
+
6. **Results in a DataFrame**: All extracted quotes and their topics are compiled into a structured DataFrame that you can preview and download.
|
60 |
+
|
61 |
+
---
|
62 |
+
|
63 |
+
Please proceed by uploading your PDF file to begin the analysis.
|
64 |
+
""")
|
65 |
+
|
66 |
# ---------------------------------------------------------------------------------------
|
67 |
# Session State Initialization
|
68 |
# ---------------------------------------------------------------------------------------
|
|
|
86 |
def __init__(self, client):
|
87 |
self.client = client
|
88 |
|
89 |
+
def prepare_llm_input(self, document_content, topics):
|
90 |
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
91 |
return f"""Extract and summarize PDF notes based on topics:
|
92 |
{topic_descriptions}
|
|
|
99 |
[Topic]
|
100 |
- "Exact quote"
|
101 |
|
102 |
+
Document Content:
|
103 |
+
{document_content}
|
104 |
"""
|
105 |
|
106 |
def prompt_response_from_hf_llm(self, llm_input):
|
|
|
148 |
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
149 |
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
# ---------------------------------------------------------------------------------------
|
152 |
# Helper Functions
|
153 |
# ---------------------------------------------------------------------------------------
|