Update app.py
Browse files
app.py
CHANGED
@@ -14,15 +14,26 @@ from docling_core.types.doc import DoclingDocument
|
|
14 |
from docling_core.types.doc.document import DocTagsDocument
|
15 |
import torch
|
16 |
|
17 |
-
#
|
18 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
if
|
25 |
-
|
26 |
|
27 |
# ---------------------------------------------------------------------------------------
|
28 |
# API Configuration
|
@@ -37,351 +48,145 @@ headers = {
|
|
37 |
# Survey Analysis Class
|
38 |
# ---------------------------------------------------------------------------------------
|
39 |
class SurveyAnalysis:
|
40 |
-
def __init__(self, api_key=None):
|
41 |
-
self.api_key = api_key
|
42 |
-
|
43 |
def prepare_llm_input(self, survey_response, topics):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
llm_input = f"""
|
48 |
-
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions:
|
49 |
-
|
50 |
{topic_descriptions}
|
51 |
|
52 |
-
|
53 |
-
- Extract
|
54 |
-
-
|
55 |
-
- Use **exact quotes** from the original text for each point in your Topic_Summary.
|
56 |
-
- Exclude erroneous content.
|
57 |
-
- Do not add additional explanations or instructions.
|
58 |
|
59 |
-
|
60 |
[Topic]
|
61 |
- "Exact quote"
|
62 |
-
- "Exact quote"
|
63 |
-
- "Exact quote"
|
64 |
|
65 |
-
|
66 |
{survey_response}
|
67 |
"""
|
68 |
-
return llm_input
|
69 |
|
70 |
def query_api(self, payload):
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def extract_meeting_notes(self, response):
|
75 |
-
|
76 |
-
return output
|
77 |
|
78 |
def process_dataframe(self, df, topics):
|
79 |
results = []
|
80 |
for _, row in df.iterrows():
|
81 |
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
82 |
-
payload = {
|
83 |
-
"user_id": "<USER or Conversation ID>",
|
84 |
-
"in-0": llm_input
|
85 |
-
}
|
86 |
response = self.query_api(payload)
|
87 |
-
|
88 |
-
results.append({
|
89 |
-
|
90 |
-
'Topic_Summary': meeting_notes
|
91 |
-
})
|
92 |
-
|
93 |
-
result_df = pd.DataFrame(results)
|
94 |
-
df = df.reset_index(drop=True)
|
95 |
-
return pd.concat([df, result_df[['Topic_Summary']]], axis=1)
|
96 |
|
97 |
# ---------------------------------------------------------------------------------------
|
98 |
-
#
|
99 |
# ---------------------------------------------------------------------------------------
|
100 |
-
def extract_excerpts(processed_df):
|
101 |
-
new_rows = []
|
102 |
-
|
103 |
-
for _, row in processed_df.iterrows():
|
104 |
-
Topic_Summary = row['Topic_Summary']
|
105 |
-
|
106 |
-
# Split the Topic_Summary by topic
|
107 |
-
sections = re.split(r'\n(?=\[)', Topic_Summary)
|
108 |
-
|
109 |
-
for section in sections:
|
110 |
-
# Extract the topic
|
111 |
-
topic_match = re.match(r'\[([^\]]+)\]', section)
|
112 |
-
if topic_match:
|
113 |
-
topic = topic_match.group(1)
|
114 |
-
|
115 |
-
# Extract all excerpts within the section
|
116 |
-
excerpts = re.findall(r'- "([^"]+)"', section)
|
117 |
-
|
118 |
-
for excerpt in excerpts:
|
119 |
-
new_rows.append({
|
120 |
-
'Document_Text': row['Document_Text'],
|
121 |
-
'Topic_Summary': row['Topic_Summary'],
|
122 |
-
'Excerpt': excerpt,
|
123 |
-
'Topic': topic
|
124 |
-
})
|
125 |
-
|
126 |
-
return pd.DataFrame(new_rows)
|
127 |
-
|
128 |
-
#------------------------------------------------------------------------
|
129 |
-
# Streamlit Configuration
|
130 |
-
#------------------------------------------------------------------------
|
131 |
-
|
132 |
-
# Set page configuration
|
133 |
-
st.set_page_config(
|
134 |
-
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
|
135 |
-
page_icon=":bar_chart:",
|
136 |
-
layout="centered",
|
137 |
-
initial_sidebar_state="auto",
|
138 |
-
menu_items={
|
139 |
-
'Get Help': 'mailto:[email protected]',
|
140 |
-
'About': "This app is built to support PDF analysis"
|
141 |
-
}
|
142 |
-
)
|
143 |
-
|
144 |
-
#------------------------------------------------------------------------
|
145 |
-
# Sidebar
|
146 |
-
#------------------------------------------------------------------------
|
147 |
-
|
148 |
-
# Sidebar with image
|
149 |
-
with st.sidebar:
|
150 |
-
# Set the desired width in pixels
|
151 |
-
image_width = 300
|
152 |
-
# Define the path to the image
|
153 |
-
# image_path = "steelcase_small.png"
|
154 |
-
image_path = "mtss.ai_small.png"
|
155 |
-
# Display the image
|
156 |
-
st.image(image_path, width=image_width)
|
157 |
-
|
158 |
-
# Additional sidebar content
|
159 |
-
|
160 |
-
with st.expander("**MTSS.ai**", expanded=True):
|
161 |
-
st.write("""
|
162 |
-
- **Support**: Cheyne LeVesseur PhD
|
163 |
-
- **Email**: [email protected]
|
164 |
-
""")
|
165 |
-
st.divider()
|
166 |
-
st.subheader('Instructions')
|
167 |
-
|
168 |
-
Instructions = """
|
169 |
-
- **Step 1**: Upload your PDF file.
|
170 |
-
- **Step 2**: Review the processed text.
|
171 |
-
- **Step 3**: Add your topics and descriptions of interest.
|
172 |
-
- **Step 4**: Review the extracted excerpts and classifications, and topic distribution and frequency.
|
173 |
-
- **Step 5**: Review bar charts of topics.
|
174 |
-
- **Step 6**: Download the processed data as a CSV file.
|
175 |
-
"""
|
176 |
-
st.markdown(Instructions)
|
177 |
-
|
178 |
-
# Load SmolDocling model using transformers
|
179 |
@st.cache_resource
|
180 |
def load_smol_docling():
|
181 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
182 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
183 |
model = AutoModelForVision2Seq.from_pretrained(
|
184 |
-
"ds4sd/SmolDocling-256M-preview",
|
185 |
-
torch_dtype=torch.float32
|
186 |
).to(device)
|
187 |
return model, processor
|
188 |
|
189 |
model, processor = load_smol_docling()
|
190 |
|
191 |
-
# # Convert PDF to images
|
192 |
-
# def convert_pdf_to_images(pdf_file):
|
193 |
-
# images = []
|
194 |
-
# doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
195 |
-
# for page_number in range(len(doc)):
|
196 |
-
# page = doc.load_page(page_number)
|
197 |
-
# pix = page.get_pixmap(dpi=300) # Higher DPI for clarity
|
198 |
-
# img_data = pix.tobytes("png")
|
199 |
-
# image = Image.open(io.BytesIO(img_data))
|
200 |
-
# images.append(image)
|
201 |
-
# return images
|
202 |
-
|
203 |
-
# Improved PDF to image conversion
|
204 |
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
|
205 |
images = []
|
206 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
207 |
-
for
|
208 |
-
page = doc.load_page(page_number)
|
209 |
pix = page.get_pixmap(dpi=dpi)
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
image.thumbnail((max_size, max_size), Image.LANCZOS)
|
214 |
-
images.append(image)
|
215 |
return images
|
216 |
|
217 |
-
# Extract structured markdown text using SmolDocling (transformers)
|
218 |
-
# def extract_markdown_from_image(image):
|
219 |
-
# prompt_text = "Convert this page to docling."
|
220 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
221 |
-
|
222 |
-
# # Prepare inputs
|
223 |
-
# messages = [
|
224 |
-
# {
|
225 |
-
# "role": "user",
|
226 |
-
# "content": [
|
227 |
-
# {"type": "image"},
|
228 |
-
# {"type": "text", "text": prompt_text}
|
229 |
-
# ]
|
230 |
-
# }
|
231 |
-
# ]
|
232 |
-
# prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
233 |
-
# inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
234 |
-
|
235 |
-
# # Generate outputs
|
236 |
-
# generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
237 |
-
# prompt_length = inputs.input_ids.shape[1]
|
238 |
-
# trimmed_generated_ids = generated_ids[:, prompt_length:]
|
239 |
-
# doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
|
240 |
-
|
241 |
-
# # Clean the output
|
242 |
-
# doctags = doctags.replace("<end_of_utterance>", "").strip()
|
243 |
-
|
244 |
-
# # Populate document
|
245 |
-
# doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
246 |
-
|
247 |
-
# # Create a docling document
|
248 |
-
# doc = DoclingDocument(name="ExtractedDocument")
|
249 |
-
# doc.load_from_doctags(doctags_doc)
|
250 |
-
|
251 |
-
# # Export as markdown
|
252 |
-
# markdown_text = doc.export_to_markdown()
|
253 |
-
# return markdown_text
|
254 |
-
|
255 |
def extract_markdown_from_image(image):
|
256 |
-
# start_time = time.time()
|
257 |
-
prompt_text = "Convert this page to docling."
|
258 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
259 |
-
|
260 |
-
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}]
|
261 |
-
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
262 |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
263 |
-
|
264 |
-
with torch.no_grad(): # <-- Crucial for speed
|
265 |
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
266 |
-
|
267 |
-
prompt_length = inputs.input_ids.shape[1]
|
268 |
-
trimmed_generated_ids = generated_ids[:, prompt_length:]
|
269 |
-
doctags = processor.batch_decode(trimmed_generated_ids, skip_special_tokens=False)[0].lstrip()
|
270 |
-
doctags = doctags.replace("<end_of_utterance>", "").strip()
|
271 |
-
|
272 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
273 |
doc = DoclingDocument(name="ExtractedDocument")
|
274 |
doc.load_from_doctags(doctags_doc)
|
275 |
-
|
276 |
-
# processing_time = time.time() - start_time
|
277 |
-
# logging.info(f"Inference took {processing_time:.2f} seconds")
|
278 |
-
return markdown_text
|
279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
# Streamlit UI
|
|
|
281 |
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
|
282 |
|
283 |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
284 |
|
285 |
-
if uploaded_file:
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
markdown_text = extract_markdown_from_image(image)
|
293 |
-
markdown_texts.append(markdown_text)
|
294 |
-
|
295 |
-
df = pd.DataFrame({'Document_Text': markdown_texts})
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
st.session_state['pdf_processed'] = True
|
301 |
|
302 |
-
st.success("PDF processed successfully!")
|
303 |
-
else:
|
304 |
-
st.success("PDF already processed. Using cached results.")
|
305 |
-
|
306 |
-
# Use cached dataframe for further processing
|
307 |
-
df = st.session_state['df']
|
308 |
-
|
309 |
-
if df.empty or df['Document_Text'].isnull().all():
|
310 |
-
st.error("No meaningful text extracted from the PDF.")
|
311 |
-
st.stop()
|
312 |
-
|
313 |
-
st.markdown("### Extracted Markdown Preview")
|
314 |
-
st.write(df.head())
|
315 |
-
|
316 |
-
if st.button("Reset / Upload New PDF"):
|
317 |
-
st.session_state['pdf_processed'] = False
|
318 |
-
st.session_state['markdown_texts'] = []
|
319 |
-
st.session_state['df'] = pd.DataFrame()
|
320 |
-
st.experimental_rerun()
|
321 |
-
|
322 |
-
# ---------------------------------------------------------------------------------------
|
323 |
-
# User Input for Topics
|
324 |
-
# ---------------------------------------------------------------------------------------
|
325 |
st.markdown("### Enter Topics and Descriptions")
|
326 |
-
num_topics = st.number_input("Number of topics",
|
327 |
-
|
328 |
topics = {}
|
329 |
for i in range(num_topics):
|
330 |
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
|
331 |
-
|
332 |
-
if topic and
|
333 |
-
topics[topic] =
|
334 |
|
335 |
-
# Add a button to execute the analysis
|
336 |
if st.button("Run Analysis"):
|
337 |
if not topics:
|
338 |
st.warning("Please enter at least one topic and description.")
|
339 |
st.stop()
|
340 |
|
341 |
-
# ---------------------------------------------------------------------------------------
|
342 |
-
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here:
|
343 |
-
# ---------------------------------------------------------------------------------------
|
344 |
analyzer = SurveyAnalysis()
|
345 |
-
processed_df = analyzer.process_dataframe(df, topics)
|
346 |
-
|
347 |
-
|
348 |
-
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic']
|
349 |
-
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns]
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
st.stop()
|
354 |
-
|
355 |
-
df_VIP_extracted = df_VIP_extracted[required_columns]
|
356 |
-
|
357 |
-
st.markdown("### Processed Meeting Notes")
|
358 |
-
st.dataframe(df_VIP_extracted)
|
359 |
-
|
360 |
-
st.write(f"**Number of meeting notes analyzed:** {len(df)}")
|
361 |
-
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}")
|
362 |
-
|
363 |
-
# CSV download
|
364 |
-
csv = df_VIP_extracted.to_csv(index=False)
|
365 |
-
st.download_button(
|
366 |
-
"Download data as CSV",
|
367 |
-
data=csv,
|
368 |
-
file_name='extracted_meeting_notes.csv',
|
369 |
-
mime='text/csv'
|
370 |
-
)
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values})
|
375 |
-
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0)
|
376 |
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
381 |
-
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1')
|
382 |
-
ax.set_ylabel('Count')
|
383 |
-
ax.set_title('Frequency of Topics')
|
384 |
st.pyplot(fig)
|
385 |
|
386 |
-
|
|
|
|
|
|
|
|
|
|
|
387 |
st.info("Please upload a PDF file to begin.")
|
|
|
14 |
from docling_core.types.doc.document import DocTagsDocument
|
15 |
import torch
|
16 |
|
17 |
+
# ---------------------------------------------------------------------------------------
|
18 |
+
# Streamlit Page Configuration
|
19 |
+
# ---------------------------------------------------------------------------------------
|
20 |
+
st.set_page_config(
|
21 |
+
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App",
|
22 |
+
page_icon=":bar_chart:",
|
23 |
+
layout="centered",
|
24 |
+
initial_sidebar_state="auto",
|
25 |
+
menu_items={
|
26 |
+
'Get Help': 'mailto:[email protected]',
|
27 |
+
'About': "This app is built to support PDF analysis"
|
28 |
+
}
|
29 |
+
)
|
30 |
|
31 |
+
# ---------------------------------------------------------------------------------------
|
32 |
+
# Session State Initialization
|
33 |
+
# ---------------------------------------------------------------------------------------
|
34 |
+
for key in ['pdf_processed', 'markdown_texts', 'df']:
|
35 |
+
if key not in st.session_state:
|
36 |
+
st.session_state[key] = False if key == 'pdf_processed' else []
|
37 |
|
38 |
# ---------------------------------------------------------------------------------------
|
39 |
# API Configuration
|
|
|
48 |
# Survey Analysis Class
|
49 |
# ---------------------------------------------------------------------------------------
|
50 |
class SurveyAnalysis:
|
|
|
|
|
|
|
51 |
def prepare_llm_input(self, survey_response, topics):
|
52 |
+
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()])
|
53 |
+
return f"""Extract and summarize PDF notes based on topics:
|
|
|
|
|
|
|
|
|
54 |
{topic_descriptions}
|
55 |
|
56 |
+
Instructions:
|
57 |
+
- Extract exact quotes per topic.
|
58 |
+
- Ignore irrelevant topics.
|
|
|
|
|
|
|
59 |
|
60 |
+
Format:
|
61 |
[Topic]
|
62 |
- "Exact quote"
|
|
|
|
|
63 |
|
64 |
+
Meeting Notes:
|
65 |
{survey_response}
|
66 |
"""
|
|
|
67 |
|
68 |
def query_api(self, payload):
|
69 |
+
try:
|
70 |
+
res = requests.post(API_URL, headers=headers, json=payload, timeout=60)
|
71 |
+
res.raise_for_status()
|
72 |
+
return res.json()
|
73 |
+
except requests.exceptions.RequestException as e:
|
74 |
+
st.error(f"API request failed: {e}")
|
75 |
+
return {'outputs': {'out-0': ''}}
|
76 |
|
77 |
def extract_meeting_notes(self, response):
|
78 |
+
return response.get('outputs', {}).get('out-0', '')
|
|
|
79 |
|
80 |
def process_dataframe(self, df, topics):
|
81 |
results = []
|
82 |
for _, row in df.iterrows():
|
83 |
llm_input = self.prepare_llm_input(row['Document_Text'], topics)
|
84 |
+
payload = {"user_id": "user", "in-0": llm_input}
|
|
|
|
|
|
|
85 |
response = self.query_api(payload)
|
86 |
+
notes = self.extract_meeting_notes(response)
|
87 |
+
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes})
|
88 |
+
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# ---------------------------------------------------------------------------------------
|
91 |
+
# Helper Functions
|
92 |
# ---------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
@st.cache_resource
|
94 |
def load_smol_docling():
|
95 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
96 |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
|
97 |
model = AutoModelForVision2Seq.from_pretrained(
|
98 |
+
"ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32
|
|
|
99 |
).to(device)
|
100 |
return model, processor
|
101 |
|
102 |
model, processor = load_smol_docling()
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600):
|
105 |
images = []
|
106 |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
107 |
+
for page in doc:
|
|
|
108 |
pix = page.get_pixmap(dpi=dpi)
|
109 |
+
img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB")
|
110 |
+
img.thumbnail((max_size, max_size), Image.LANCZOS)
|
111 |
+
images.append(img)
|
|
|
|
|
112 |
return images
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def extract_markdown_from_image(image):
|
|
|
|
|
115 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
116 |
+
prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True)
|
|
|
|
|
117 |
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device)
|
118 |
+
with torch.no_grad():
|
|
|
119 |
generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
120 |
+
doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip()
|
|
|
|
|
|
|
|
|
|
|
121 |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image])
|
122 |
doc = DoclingDocument(name="ExtractedDocument")
|
123 |
doc.load_from_doctags(doctags_doc)
|
124 |
+
return doc.export_to_markdown()
|
|
|
|
|
|
|
125 |
|
126 |
+
def extract_excerpts(processed_df):
|
127 |
+
rows = []
|
128 |
+
for _, r in processed_df.iterrows():
|
129 |
+
for sec in re.split(r'\n(?=\[)', r['Topic_Summary']):
|
130 |
+
topic_match = re.match(r'\[([^\]]+)\]', sec)
|
131 |
+
if topic_match:
|
132 |
+
topic = topic_match.group(1)
|
133 |
+
excerpts = re.findall(r'- "([^"]+)"', sec)
|
134 |
+
for excerpt in excerpts:
|
135 |
+
rows.append({'Document_Text': r['Document_Text'], 'Topic_Summary': r['Topic_Summary'], 'Excerpt': excerpt, 'Topic': topic})
|
136 |
+
return pd.DataFrame(rows)
|
137 |
+
|
138 |
+
# ---------------------------------------------------------------------------------------
|
139 |
# Streamlit UI
|
140 |
+
# ---------------------------------------------------------------------------------------
|
141 |
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App")
|
142 |
|
143 |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
|
144 |
|
145 |
+
if uploaded_file and not st.session_state['pdf_processed']:
|
146 |
+
with st.spinner("Processing PDF..."):
|
147 |
+
images = convert_pdf_to_images(uploaded_file)
|
148 |
+
markdown_texts = [extract_markdown_from_image(img) for img in images]
|
149 |
+
st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts})
|
150 |
+
st.session_state['pdf_processed'] = True
|
151 |
+
st.success("PDF processed successfully!")
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
if st.session_state['pdf_processed']:
|
154 |
+
st.markdown("### Extracted Text Preview")
|
155 |
+
st.write(st.session_state['df'].head())
|
|
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
st.markdown("### Enter Topics and Descriptions")
|
158 |
+
num_topics = st.number_input("Number of topics", 1, 10, 1)
|
|
|
159 |
topics = {}
|
160 |
for i in range(num_topics):
|
161 |
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}")
|
162 |
+
desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}")
|
163 |
+
if topic and desc:
|
164 |
+
topics[topic] = desc
|
165 |
|
|
|
166 |
if st.button("Run Analysis"):
|
167 |
if not topics:
|
168 |
st.warning("Please enter at least one topic and description.")
|
169 |
st.stop()
|
170 |
|
|
|
|
|
|
|
171 |
analyzer = SurveyAnalysis()
|
172 |
+
processed_df = analyzer.process_dataframe(st.session_state['df'], topics)
|
173 |
+
extracted_df = extract_excerpts(processed_df)
|
|
|
|
|
|
|
174 |
|
175 |
+
st.markdown("### Extracted Excerpts")
|
176 |
+
st.dataframe(extracted_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
csv = extracted_df.to_csv(index=False)
|
179 |
+
st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv")
|
|
|
|
|
180 |
|
181 |
+
topic_counts = extracted_df['Topic'].value_counts()
|
182 |
+
fig, ax = plt.subplots()
|
183 |
+
topic_counts.plot.bar(ax=ax, color='#3d9aa1')
|
|
|
|
|
|
|
|
|
184 |
st.pyplot(fig)
|
185 |
|
186 |
+
if st.button("Reset / Upload New PDF"):
|
187 |
+
for key in ['pdf_processed', 'markdown_texts', 'df']:
|
188 |
+
st.session_state[key] = False if key == 'pdf_processed' else []
|
189 |
+
st.experimental_rerun()
|
190 |
+
|
191 |
+
if not uploaded_file:
|
192 |
st.info("Please upload a PDF file to begin.")
|