Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Function | |
from torch.amp import custom_bwd, custom_fwd | |
from pytorch3d import io | |
from pytorch3d.renderer import ( | |
PointsRasterizationSettings, | |
PointsRasterizer) | |
from pytorch3d.structures import Pointclouds | |
from pytorch3d.utils.camera_conversions import cameras_from_opencv_projection | |
import cv2 | |
from tgs.utils.typing import * | |
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]] | |
def scale_tensor( | |
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale | |
): | |
if inp_scale is None: | |
inp_scale = (0, 1) | |
if tgt_scale is None: | |
tgt_scale = (0, 1) | |
if isinstance(tgt_scale, Tensor): | |
assert dat.shape[-1] == tgt_scale.shape[-1] | |
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) | |
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] | |
return dat | |
class _TruncExp(Function): # pylint: disable=abstract-method | |
# Implementation from torch-ngp: | |
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py | |
def forward(ctx, x): # pylint: disable=arguments-differ | |
ctx.save_for_backward(x) | |
return torch.exp(x) | |
def backward(ctx, g): # pylint: disable=arguments-differ | |
x = ctx.saved_tensors[0] | |
return g * torch.exp(torch.clamp(x, max=15)) | |
trunc_exp = _TruncExp.apply | |
def get_activation(name) -> Callable: | |
if name is None: | |
return lambda x: x | |
name = name.lower() | |
if name == "none": | |
return lambda x: x | |
elif name == "lin2srgb": | |
return lambda x: torch.where( | |
x > 0.0031308, | |
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055, | |
12.92 * x, | |
).clamp(0.0, 1.0) | |
elif name == "exp": | |
return lambda x: torch.exp(x) | |
elif name == "shifted_exp": | |
return lambda x: torch.exp(x - 1.0) | |
elif name == "trunc_exp": | |
return trunc_exp | |
elif name == "shifted_trunc_exp": | |
return lambda x: trunc_exp(x - 1.0) | |
elif name == "sigmoid": | |
return lambda x: torch.sigmoid(x) | |
elif name == "tanh": | |
return lambda x: torch.tanh(x) | |
elif name == "shifted_softplus": | |
return lambda x: F.softplus(x - 1.0) | |
elif name == "scale_-11_01": | |
return lambda x: x * 0.5 + 0.5 | |
else: | |
try: | |
return getattr(F, name) | |
except AttributeError: | |
raise ValueError(f"Unknown activation function: {name}") | |
def get_ray_directions( | |
H: int, | |
W: int, | |
focal: Union[float, Tuple[float, float]], | |
principal: Optional[Tuple[float, float]] = None, | |
use_pixel_centers: bool = True, | |
) -> Float[Tensor, "H W 3"]: | |
""" | |
Get ray directions for all pixels in camera coordinate. | |
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ | |
ray-tracing-generating-camera-rays/standard-coordinate-systems | |
Inputs: | |
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers | |
Outputs: | |
directions: (H, W, 3), the direction of the rays in camera coordinate | |
""" | |
pixel_center = 0.5 if use_pixel_centers else 0 | |
if isinstance(focal, float): | |
fx, fy = focal, focal | |
cx, cy = W / 2, H / 2 | |
else: | |
fx, fy = focal | |
assert principal is not None | |
cx, cy = principal | |
i, j = torch.meshgrid( | |
torch.arange(W, dtype=torch.float32) + pixel_center, | |
torch.arange(H, dtype=torch.float32) + pixel_center, | |
indexing="xy", | |
) | |
directions: Float[Tensor, "H W 3"] = torch.stack( | |
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1 | |
) | |
return directions | |
def get_rays( | |
directions: Float[Tensor, "... 3"], | |
c2w: Float[Tensor, "... 4 4"], | |
keepdim=False, | |
noise_scale=0.0, | |
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]: | |
# Rotate ray directions from camera coordinate to the world coordinate | |
assert directions.shape[-1] == 3 | |
if directions.ndim == 2: # (N_rays, 3) | |
if c2w.ndim == 2: # (4, 4) | |
c2w = c2w[None, :, :] | |
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4) | |
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3) | |
rays_o = c2w[:, :3, 3].expand(rays_d.shape) | |
elif directions.ndim == 3: # (H, W, 3) | |
assert c2w.ndim in [2, 3] | |
if c2w.ndim == 2: # (4, 4) | |
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( | |
-1 | |
) # (H, W, 3) | |
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) | |
elif c2w.ndim == 3: # (B, 4, 4) | |
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( | |
-1 | |
) # (B, H, W, 3) | |
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) | |
elif directions.ndim == 4: # (B, H, W, 3) | |
assert c2w.ndim == 3 # (B, 4, 4) | |
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( | |
-1 | |
) # (B, H, W, 3) | |
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) | |
# add camera noise to avoid grid-like artifect | |
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373 | |
if noise_scale > 0: | |
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale | |
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale | |
rays_d = F.normalize(rays_d, dim=-1) | |
if not keepdim: | |
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) | |
return rays_o, rays_d | |
def get_projection_matrix( | |
fovy: Union[float, Float[Tensor, "B"]], aspect_wh: float, near: float, far: float | |
) -> Float[Tensor, "*B 4 4"]: | |
if isinstance(fovy, float): | |
proj_mtx = torch.zeros(4, 4, dtype=torch.float32) | |
proj_mtx[0, 0] = 1.0 / (math.tan(fovy / 2.0) * aspect_wh) | |
proj_mtx[1, 1] = -1.0 / math.tan( | |
fovy / 2.0 | |
) # add a negative sign here as the y axis is flipped in nvdiffrast output | |
proj_mtx[2, 2] = -(far + near) / (far - near) | |
proj_mtx[2, 3] = -2.0 * far * near / (far - near) | |
proj_mtx[3, 2] = -1.0 | |
else: | |
batch_size = fovy.shape[0] | |
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32) | |
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh) | |
proj_mtx[:, 1, 1] = -1.0 / torch.tan( | |
fovy / 2.0 | |
) # add a negative sign here as the y axis is flipped in nvdiffrast output | |
proj_mtx[:, 2, 2] = -(far + near) / (far - near) | |
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near) | |
proj_mtx[:, 3, 2] = -1.0 | |
return proj_mtx | |
def get_mvp_matrix( | |
c2w: Float[Tensor, "*B 4 4"], proj_mtx: Float[Tensor, "*B 4 4"] | |
) -> Float[Tensor, "*B 4 4"]: | |
# calculate w2c from c2w: R' = Rt, t' = -Rt * t | |
# mathematically equivalent to (c2w)^-1 | |
if c2w.ndim == 2: | |
assert proj_mtx.ndim == 2 | |
w2c: Float[Tensor, "4 4"] = torch.zeros(4, 4).to(c2w) | |
w2c[:3, :3] = c2w[:3, :3].permute(1, 0) | |
w2c[:3, 3:] = -c2w[:3, :3].permute(1, 0) @ c2w[:3, 3:] | |
w2c[3, 3] = 1.0 | |
else: | |
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w) | |
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1) | |
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:] | |
w2c[:, 3, 3] = 1.0 | |
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx) | |
mvp_mtx = proj_mtx @ w2c | |
return mvp_mtx | |
def get_intrinsic_from_fov(fov, H, W, bs=-1): | |
focal_length = 0.5 * H / np.tan(0.5 * fov) | |
intrinsic = np.identity(3, dtype=np.float32) | |
intrinsic[0, 0] = focal_length | |
intrinsic[1, 1] = focal_length | |
intrinsic[0, 2] = W / 2.0 | |
intrinsic[1, 2] = H / 2.0 | |
if bs > 0: | |
intrinsic = intrinsic[None].repeat(bs, axis=0) | |
return torch.from_numpy(intrinsic) | |
def points_projection(points: Float[Tensor, "B Np 3"], | |
c2ws: Float[Tensor, "B 4 4"], | |
intrinsics: Float[Tensor, "B 3 3"], | |
local_features: Float[Tensor, "B C H W"], | |
# Rasterization settings | |
raster_point_radius: float = 0.0075, # point size | |
raster_points_per_pixel: int = 1, # a single point per pixel, for now | |
bin_size: int = 0): | |
B, C, H, W = local_features.shape | |
device = local_features.device | |
raster_settings = PointsRasterizationSettings( | |
image_size=(H, W), | |
radius=raster_point_radius, | |
points_per_pixel=raster_points_per_pixel, | |
bin_size=bin_size, | |
) | |
Np = points.shape[1] | |
R = raster_settings.points_per_pixel | |
w2cs = torch.inverse(c2ws) | |
image_size = torch.as_tensor([H, W]).view(1, 2).expand(w2cs.shape[0], -1).to(device) | |
cameras = cameras_from_opencv_projection(w2cs[:, :3, :3], w2cs[:, :3, 3], intrinsics, image_size) | |
rasterize = PointsRasterizer(cameras=cameras, raster_settings=raster_settings) | |
fragments = rasterize(Pointclouds(points)) | |
fragments_idx: Tensor = fragments.idx.long() | |
visible_pixels = (fragments_idx > -1) # (B, H, W, R) | |
points_to_visible_pixels = fragments_idx[visible_pixels] | |
# Reshape local features to (B, H, W, R, C) | |
local_features = local_features.permute(0, 2, 3, 1).unsqueeze(-2).expand(-1, -1, -1, R, -1) # (B, H, W, R, C) | |
# Get local features corresponding to visible points | |
local_features_proj = torch.zeros(B * Np, C, device=device) | |
local_features_proj[points_to_visible_pixels] = local_features[visible_pixels] | |
local_features_proj = local_features_proj.reshape(B, Np, C) | |
return local_features_proj | |
def compute_distance_transform(mask: torch.Tensor): | |
image_size = mask.shape[-1] | |
distance_transform = torch.stack([ | |
torch.from_numpy(cv2.distanceTransform( | |
(1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3 | |
) / (image_size / 2)) | |
for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8) | |
]).unsqueeze(1).clip(0, 1).to(mask.device) | |
return distance_transform | |