Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,415 Bytes
717b269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Function
from torch.amp import custom_bwd, custom_fwd
from pytorch3d import io
from pytorch3d.renderer import (
PointsRasterizationSettings,
PointsRasterizer)
from pytorch3d.structures import Pointclouds
from pytorch3d.utils.camera_conversions import cameras_from_opencv_projection
import cv2
from tgs.utils.typing import *
ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]]
def scale_tensor(
dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale
):
if inp_scale is None:
inp_scale = (0, 1)
if tgt_scale is None:
tgt_scale = (0, 1)
if isinstance(tgt_scale, Tensor):
assert dat.shape[-1] == tgt_scale.shape[-1]
dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
return dat
class _TruncExp(Function): # pylint: disable=abstract-method
# Implementation from torch-ngp:
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
@staticmethod
@custom_fwd(cast_inputs=torch.float32, device_type="cuda")
def forward(ctx, x): # pylint: disable=arguments-differ
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@custom_bwd(device_type="cuda")
def backward(ctx, g): # pylint: disable=arguments-differ
x = ctx.saved_tensors[0]
return g * torch.exp(torch.clamp(x, max=15))
trunc_exp = _TruncExp.apply
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none":
return lambda x: x
elif name == "lin2srgb":
return lambda x: torch.where(
x > 0.0031308,
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
12.92 * x,
).clamp(0.0, 1.0)
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "shifted_exp":
return lambda x: torch.exp(x - 1.0)
elif name == "trunc_exp":
return trunc_exp
elif name == "shifted_trunc_exp":
return lambda x: trunc_exp(x - 1.0)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "shifted_softplus":
return lambda x: F.softplus(x - 1.0)
elif name == "scale_-11_01":
return lambda x: x * 0.5 + 0.5
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
def get_ray_directions(
H: int,
W: int,
focal: Union[float, Tuple[float, float]],
principal: Optional[Tuple[float, float]] = None,
use_pixel_centers: bool = True,
) -> Float[Tensor, "H W 3"]:
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
pixel_center = 0.5 if use_pixel_centers else 0
if isinstance(focal, float):
fx, fy = focal, focal
cx, cy = W / 2, H / 2
else:
fx, fy = focal
assert principal is not None
cx, cy = principal
i, j = torch.meshgrid(
torch.arange(W, dtype=torch.float32) + pixel_center,
torch.arange(H, dtype=torch.float32) + pixel_center,
indexing="xy",
)
directions: Float[Tensor, "H W 3"] = torch.stack(
[(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1
)
return directions
def get_rays(
directions: Float[Tensor, "... 3"],
c2w: Float[Tensor, "... 4 4"],
keepdim=False,
noise_scale=0.0,
) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]:
# Rotate ray directions from camera coordinate to the world coordinate
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
if c2w.ndim == 2: # (4, 4)
c2w = c2w[None, :, :]
assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4)
rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:, :3, 3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
assert c2w.ndim in [2, 3]
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
-1
) # (H, W, 3)
rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
elif directions.ndim == 4: # (B, H, W, 3)
assert c2w.ndim == 3 # (B, 4, 4)
rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
-1
) # (B, H, W, 3)
rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
# add camera noise to avoid grid-like artifect
# https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
if noise_scale > 0:
rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale
rays_d = F.normalize(rays_d, dim=-1)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
def get_projection_matrix(
fovy: Union[float, Float[Tensor, "B"]], aspect_wh: float, near: float, far: float
) -> Float[Tensor, "*B 4 4"]:
if isinstance(fovy, float):
proj_mtx = torch.zeros(4, 4, dtype=torch.float32)
proj_mtx[0, 0] = 1.0 / (math.tan(fovy / 2.0) * aspect_wh)
proj_mtx[1, 1] = -1.0 / math.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[2, 2] = -(far + near) / (far - near)
proj_mtx[2, 3] = -2.0 * far * near / (far - near)
proj_mtx[3, 2] = -1.0
else:
batch_size = fovy.shape[0]
proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
proj_mtx[:, 1, 1] = -1.0 / torch.tan(
fovy / 2.0
) # add a negative sign here as the y axis is flipped in nvdiffrast output
proj_mtx[:, 2, 2] = -(far + near) / (far - near)
proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
proj_mtx[:, 3, 2] = -1.0
return proj_mtx
def get_mvp_matrix(
c2w: Float[Tensor, "*B 4 4"], proj_mtx: Float[Tensor, "*B 4 4"]
) -> Float[Tensor, "*B 4 4"]:
# calculate w2c from c2w: R' = Rt, t' = -Rt * t
# mathematically equivalent to (c2w)^-1
if c2w.ndim == 2:
assert proj_mtx.ndim == 2
w2c: Float[Tensor, "4 4"] = torch.zeros(4, 4).to(c2w)
w2c[:3, :3] = c2w[:3, :3].permute(1, 0)
w2c[:3, 3:] = -c2w[:3, :3].permute(1, 0) @ c2w[:3, 3:]
w2c[3, 3] = 1.0
else:
w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w)
w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1)
w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:]
w2c[:, 3, 3] = 1.0
# calculate mvp matrix by proj_mtx @ w2c (mv_mtx)
mvp_mtx = proj_mtx @ w2c
return mvp_mtx
def get_intrinsic_from_fov(fov, H, W, bs=-1):
focal_length = 0.5 * H / np.tan(0.5 * fov)
intrinsic = np.identity(3, dtype=np.float32)
intrinsic[0, 0] = focal_length
intrinsic[1, 1] = focal_length
intrinsic[0, 2] = W / 2.0
intrinsic[1, 2] = H / 2.0
if bs > 0:
intrinsic = intrinsic[None].repeat(bs, axis=0)
return torch.from_numpy(intrinsic)
def points_projection(points: Float[Tensor, "B Np 3"],
c2ws: Float[Tensor, "B 4 4"],
intrinsics: Float[Tensor, "B 3 3"],
local_features: Float[Tensor, "B C H W"],
# Rasterization settings
raster_point_radius: float = 0.0075, # point size
raster_points_per_pixel: int = 1, # a single point per pixel, for now
bin_size: int = 0):
B, C, H, W = local_features.shape
device = local_features.device
raster_settings = PointsRasterizationSettings(
image_size=(H, W),
radius=raster_point_radius,
points_per_pixel=raster_points_per_pixel,
bin_size=bin_size,
)
Np = points.shape[1]
R = raster_settings.points_per_pixel
w2cs = torch.inverse(c2ws)
image_size = torch.as_tensor([H, W]).view(1, 2).expand(w2cs.shape[0], -1).to(device)
cameras = cameras_from_opencv_projection(w2cs[:, :3, :3], w2cs[:, :3, 3], intrinsics, image_size)
rasterize = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
fragments = rasterize(Pointclouds(points))
fragments_idx: Tensor = fragments.idx.long()
visible_pixels = (fragments_idx > -1) # (B, H, W, R)
points_to_visible_pixels = fragments_idx[visible_pixels]
# Reshape local features to (B, H, W, R, C)
local_features = local_features.permute(0, 2, 3, 1).unsqueeze(-2).expand(-1, -1, -1, R, -1) # (B, H, W, R, C)
# Get local features corresponding to visible points
local_features_proj = torch.zeros(B * Np, C, device=device)
local_features_proj[points_to_visible_pixels] = local_features[visible_pixels]
local_features_proj = local_features_proj.reshape(B, Np, C)
return local_features_proj
def compute_distance_transform(mask: torch.Tensor):
image_size = mask.shape[-1]
distance_transform = torch.stack([
torch.from_numpy(cv2.distanceTransform(
(1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3
) / (image_size / 2))
for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8)
]).unsqueeze(1).clip(0, 1).to(mask.device)
return distance_transform
|