import math import numpy as np import torch import torch.nn.functional as F from torch.autograd import Function from torch.amp import custom_bwd, custom_fwd from pytorch3d import io from pytorch3d.renderer import ( PointsRasterizationSettings, PointsRasterizer) from pytorch3d.structures import Pointclouds from pytorch3d.utils.camera_conversions import cameras_from_opencv_projection import cv2 from tgs.utils.typing import * ValidScale = Union[Tuple[float, float], Num[Tensor, "2 D"]] def scale_tensor( dat: Num[Tensor, "... D"], inp_scale: ValidScale, tgt_scale: ValidScale ): if inp_scale is None: inp_scale = (0, 1) if tgt_scale is None: tgt_scale = (0, 1) if isinstance(tgt_scale, Tensor): assert dat.shape[-1] == tgt_scale.shape[-1] dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0]) dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0] return dat class _TruncExp(Function): # pylint: disable=abstract-method # Implementation from torch-ngp: # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py @staticmethod @custom_fwd(cast_inputs=torch.float32, device_type="cuda") def forward(ctx, x): # pylint: disable=arguments-differ ctx.save_for_backward(x) return torch.exp(x) @staticmethod @custom_bwd(device_type="cuda") def backward(ctx, g): # pylint: disable=arguments-differ x = ctx.saved_tensors[0] return g * torch.exp(torch.clamp(x, max=15)) trunc_exp = _TruncExp.apply def get_activation(name) -> Callable: if name is None: return lambda x: x name = name.lower() if name == "none": return lambda x: x elif name == "lin2srgb": return lambda x: torch.where( x > 0.0031308, torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055, 12.92 * x, ).clamp(0.0, 1.0) elif name == "exp": return lambda x: torch.exp(x) elif name == "shifted_exp": return lambda x: torch.exp(x - 1.0) elif name == "trunc_exp": return trunc_exp elif name == "shifted_trunc_exp": return lambda x: trunc_exp(x - 1.0) elif name == "sigmoid": return lambda x: torch.sigmoid(x) elif name == "tanh": return lambda x: torch.tanh(x) elif name == "shifted_softplus": return lambda x: F.softplus(x - 1.0) elif name == "scale_-11_01": return lambda x: x * 0.5 + 0.5 else: try: return getattr(F, name) except AttributeError: raise ValueError(f"Unknown activation function: {name}") def get_ray_directions( H: int, W: int, focal: Union[float, Tuple[float, float]], principal: Optional[Tuple[float, float]] = None, use_pixel_centers: bool = True, ) -> Float[Tensor, "H W 3"]: """ Get ray directions for all pixels in camera coordinate. Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/ ray-tracing-generating-camera-rays/standard-coordinate-systems Inputs: H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers Outputs: directions: (H, W, 3), the direction of the rays in camera coordinate """ pixel_center = 0.5 if use_pixel_centers else 0 if isinstance(focal, float): fx, fy = focal, focal cx, cy = W / 2, H / 2 else: fx, fy = focal assert principal is not None cx, cy = principal i, j = torch.meshgrid( torch.arange(W, dtype=torch.float32) + pixel_center, torch.arange(H, dtype=torch.float32) + pixel_center, indexing="xy", ) directions: Float[Tensor, "H W 3"] = torch.stack( [(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1 ) return directions def get_rays( directions: Float[Tensor, "... 3"], c2w: Float[Tensor, "... 4 4"], keepdim=False, noise_scale=0.0, ) -> Tuple[Float[Tensor, "... 3"], Float[Tensor, "... 3"]]: # Rotate ray directions from camera coordinate to the world coordinate assert directions.shape[-1] == 3 if directions.ndim == 2: # (N_rays, 3) if c2w.ndim == 2: # (4, 4) c2w = c2w[None, :, :] assert c2w.ndim == 3 # (N_rays, 4, 4) or (1, 4, 4) rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1) # (N_rays, 3) rays_o = c2w[:, :3, 3].expand(rays_d.shape) elif directions.ndim == 3: # (H, W, 3) assert c2w.ndim in [2, 3] if c2w.ndim == 2: # (4, 4) rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum( -1 ) # (H, W, 3) rays_o = c2w[None, None, :3, 3].expand(rays_d.shape) elif c2w.ndim == 3: # (B, 4, 4) rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( -1 ) # (B, H, W, 3) rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) elif directions.ndim == 4: # (B, H, W, 3) assert c2w.ndim == 3 # (B, 4, 4) rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum( -1 ) # (B, H, W, 3) rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape) # add camera noise to avoid grid-like artifect # https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373 if noise_scale > 0: rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale rays_d = F.normalize(rays_d, dim=-1) if not keepdim: rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3) return rays_o, rays_d def get_projection_matrix( fovy: Union[float, Float[Tensor, "B"]], aspect_wh: float, near: float, far: float ) -> Float[Tensor, "*B 4 4"]: if isinstance(fovy, float): proj_mtx = torch.zeros(4, 4, dtype=torch.float32) proj_mtx[0, 0] = 1.0 / (math.tan(fovy / 2.0) * aspect_wh) proj_mtx[1, 1] = -1.0 / math.tan( fovy / 2.0 ) # add a negative sign here as the y axis is flipped in nvdiffrast output proj_mtx[2, 2] = -(far + near) / (far - near) proj_mtx[2, 3] = -2.0 * far * near / (far - near) proj_mtx[3, 2] = -1.0 else: batch_size = fovy.shape[0] proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32) proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh) proj_mtx[:, 1, 1] = -1.0 / torch.tan( fovy / 2.0 ) # add a negative sign here as the y axis is flipped in nvdiffrast output proj_mtx[:, 2, 2] = -(far + near) / (far - near) proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near) proj_mtx[:, 3, 2] = -1.0 return proj_mtx def get_mvp_matrix( c2w: Float[Tensor, "*B 4 4"], proj_mtx: Float[Tensor, "*B 4 4"] ) -> Float[Tensor, "*B 4 4"]: # calculate w2c from c2w: R' = Rt, t' = -Rt * t # mathematically equivalent to (c2w)^-1 if c2w.ndim == 2: assert proj_mtx.ndim == 2 w2c: Float[Tensor, "4 4"] = torch.zeros(4, 4).to(c2w) w2c[:3, :3] = c2w[:3, :3].permute(1, 0) w2c[:3, 3:] = -c2w[:3, :3].permute(1, 0) @ c2w[:3, 3:] w2c[3, 3] = 1.0 else: w2c: Float[Tensor, "B 4 4"] = torch.zeros(c2w.shape[0], 4, 4).to(c2w) w2c[:, :3, :3] = c2w[:, :3, :3].permute(0, 2, 1) w2c[:, :3, 3:] = -c2w[:, :3, :3].permute(0, 2, 1) @ c2w[:, :3, 3:] w2c[:, 3, 3] = 1.0 # calculate mvp matrix by proj_mtx @ w2c (mv_mtx) mvp_mtx = proj_mtx @ w2c return mvp_mtx def get_intrinsic_from_fov(fov, H, W, bs=-1): focal_length = 0.5 * H / np.tan(0.5 * fov) intrinsic = np.identity(3, dtype=np.float32) intrinsic[0, 0] = focal_length intrinsic[1, 1] = focal_length intrinsic[0, 2] = W / 2.0 intrinsic[1, 2] = H / 2.0 if bs > 0: intrinsic = intrinsic[None].repeat(bs, axis=0) return torch.from_numpy(intrinsic) def points_projection(points: Float[Tensor, "B Np 3"], c2ws: Float[Tensor, "B 4 4"], intrinsics: Float[Tensor, "B 3 3"], local_features: Float[Tensor, "B C H W"], # Rasterization settings raster_point_radius: float = 0.0075, # point size raster_points_per_pixel: int = 1, # a single point per pixel, for now bin_size: int = 0): B, C, H, W = local_features.shape device = local_features.device raster_settings = PointsRasterizationSettings( image_size=(H, W), radius=raster_point_radius, points_per_pixel=raster_points_per_pixel, bin_size=bin_size, ) Np = points.shape[1] R = raster_settings.points_per_pixel w2cs = torch.inverse(c2ws) image_size = torch.as_tensor([H, W]).view(1, 2).expand(w2cs.shape[0], -1).to(device) cameras = cameras_from_opencv_projection(w2cs[:, :3, :3], w2cs[:, :3, 3], intrinsics, image_size) rasterize = PointsRasterizer(cameras=cameras, raster_settings=raster_settings) fragments = rasterize(Pointclouds(points)) fragments_idx: Tensor = fragments.idx.long() visible_pixels = (fragments_idx > -1) # (B, H, W, R) points_to_visible_pixels = fragments_idx[visible_pixels] # Reshape local features to (B, H, W, R, C) local_features = local_features.permute(0, 2, 3, 1).unsqueeze(-2).expand(-1, -1, -1, R, -1) # (B, H, W, R, C) # Get local features corresponding to visible points local_features_proj = torch.zeros(B * Np, C, device=device) local_features_proj[points_to_visible_pixels] = local_features[visible_pixels] local_features_proj = local_features_proj.reshape(B, Np, C) return local_features_proj def compute_distance_transform(mask: torch.Tensor): image_size = mask.shape[-1] distance_transform = torch.stack([ torch.from_numpy(cv2.distanceTransform( (1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3 ) / (image_size / 2)) for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8) ]).unsqueeze(1).clip(0, 1).to(mask.device) return distance_transform