Spaces:
Running
Running
import json | |
import os | |
import sys | |
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torchvision.transforms as T | |
from decord import VideoReader, cpu | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from tqdm import tqdm | |
from transformers import AutoTokenizer | |
sys.path.insert(0, os.path.join(str(Path(__file__).resolve().parents[2]), "src/third_party/InternVL/internvl_chat")) | |
from internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose( | |
[ | |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD), | |
] | |
) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float("inf") | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image_file, input_size=448, max_num=12): | |
image = Image.open(image_file).convert("RGB") | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
return pixel_values | |
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / num_segments | |
frame_indices = np.array( | |
[int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)] | |
) | |
return frame_indices | |
def load_video( | |
video_path, | |
bound=None, | |
input_size=448, | |
max_num=1, | |
num_segments=32, | |
cache_dir=".cache/expcache", | |
): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
max_frame = len(vr) - 1 | |
fps = float(vr.get_avg_fps()) | |
video_cache_dir = video_path.split("/")[-2] + "_" + os.path.basename(video_path).split(".")[0] | |
video_cache_dir = os.path.join(cache_dir, video_cache_dir) | |
cache_filename = os.path.join( | |
video_cache_dir, | |
f"_bound-{bound}_input_size-{input_size}_max_num-{max_num}_num_segments-{num_segments}.pt", | |
) | |
if os.path.exists(cache_filename) and os.path.isfile(cache_filename): | |
cache = torch.load(cache_filename, weights_only=True) | |
pixel_values = cache["pixel_values"] | |
num_patches_list = cache["num_patches_list"] | |
else: | |
pixel_values_list, num_patches_list = [], [] | |
transform = build_transform(input_size=input_size) | |
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) | |
frame_indices = np.append(0, frame_indices) # Add 0 at the beginning of the list | |
frame_indices = np.append(frame_indices, max_frame) # Add max_frame at the end of the list | |
os.makedirs(video_cache_dir, exist_ok=True) | |
idx = 0 | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB") | |
img.save(os.path.join(video_cache_dir, f"frame_{frame_index}_tile_{idx}.png")) | |
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(tile) for tile in img] | |
pixel_values = torch.stack(pixel_values) | |
num_patches_list.append(pixel_values.shape[0]) | |
pixel_values_list.append(pixel_values) | |
idx += 1 | |
pixel_values = torch.cat(pixel_values_list) | |
os.makedirs(cache_dir, exist_ok=True) | |
torch.save({"pixel_values": pixel_values, "num_patches_list": num_patches_list}, cache_filename) | |
return pixel_values, num_patches_list | |
def analyze_predictions(file_path): | |
# Read the CSV file | |
df = pd.read_csv(file_path) | |
# Calculate overall accuracy | |
total_samples = len(df) | |
correct_predictions = df["is_correct"].value_counts().get(True, 0) | |
overall_accuracy = correct_predictions / total_samples | |
# Initialize metrics for each class | |
classes = ["A", "B", "C"] | |
class_metrics = {} | |
for cls in classes: | |
# Filter for samples where target is this class | |
true_class = df[df["target"] == cls] | |
# Filter for samples where prediction is this class | |
# pred_class = df[df["predict"] == cls] | |
# Calculate TP, FP, FN | |
TP = len(df[(df["target"] == cls) & (df["predict"] == cls)]) | |
FP = len(df[(df["target"] != cls) & (df["predict"] == cls)]) | |
FN = len(df[(df["target"] == cls) & (df["predict"] != cls)]) | |
# Calculate precision, recall, F1 | |
precision = TP / (TP + FP) if (TP + FP) > 0 else 0 | |
recall = TP / (TP + FN) if (TP + FN) > 0 else 0 | |
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 | |
# Store metrics | |
class_metrics[cls] = { | |
"total_samples": len(true_class), | |
"precision": precision, | |
"recall": recall, | |
"f1": f1, | |
"true_positives": TP, | |
"false_positives": FP, | |
"false_negatives": FN, | |
} | |
print(f"Overall Accuracy: {overall_accuracy:.4f} ({correct_predictions}/{total_samples})") | |
print() | |
print("Indicators for each category:") | |
for cls in classes: | |
metrics = class_metrics[cls] | |
print(f" Class {cls}:") | |
print(f" Total Samples: {metrics['total_samples']}") | |
print(f" Precision: {metrics['precision']:.4f}") | |
print(f" Recall: {metrics['recall']:.4f}") | |
print(f" F1 Score: {metrics['f1']:.4f}") | |
print(f" True Positives: {metrics['true_positives']}") | |
print(f" False Positives: {metrics['false_positives']}") | |
print(f" False Negatives: {metrics['false_negatives']}") | |
return overall_accuracy, class_metrics | |
def s_thread(video_dir, model_path, device, chunk, idx, queue): | |
model = InternVLChatModel.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
use_flash_attn=True, | |
) | |
model = model.eval().to(device) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) | |
generation_config = dict(max_new_tokens=1024, do_sample=False) | |
res = [] | |
for line in tqdm(chunk, position=idx, desc=f"Device {device}"): | |
data = json.loads(line) | |
video_path = os.path.join(video_dir, data["video"]) | |
ques = data["conversations"][0]["value"] | |
target_ans = data["conversations"][1]["value"].split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip() | |
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) | |
pixel_values = pixel_values.to(torch.bfloat16).to(device) | |
video_prefix = "".join([f"Frame{i + 1}: <image>\n" for i in range(len(num_patches_list))]) | |
question = video_prefix + f"{ques}" | |
response = model.chat( | |
tokenizer, | |
pixel_values, | |
question, | |
generation_config, | |
num_patches_list=num_patches_list, | |
history=None, | |
return_history=False, | |
) | |
try: | |
ans = response.split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip() | |
except Exception as e: | |
print(f"Error: {e}, response: {response}") | |
ans = response.strip()[0] | |
is_correct = False | |
if ans == target_ans: | |
is_correct = True | |
res.append(f"{video_path},{is_correct},{target_ans},{ans}") | |
queue.put(res) | |
if __name__ == "__main__": | |
import argparse | |
import torch.multiprocessing as mp | |
parser = argparse.ArgumentParser(description="eval script for mmlm") | |
parser.add_argument("--model_path", type=str, help="Path to the model checkpoint.") | |
parser.add_argument("--test_file", type=str, help="Path to the test file.") | |
parser.add_argument("--video_dir", type=str, help="Path to the test video directory.") | |
parser.add_argument("--gpuids", type=str, help="GPU ids to use.") | |
# python eval.py --model_path /path/to/model --test_file /path/to/test_file --video_dir /path/to/video_dir --gpuids 0,1,2,3 | |
args = parser.parse_args() | |
model_path = args.model_path | |
test_file = args.test_file | |
video_dir = args.video_dir | |
gpu_ids = args.gpuids.split(",") if args.gpuids else ["0"] | |
cot_test = Path(test_file).read_text().splitlines() | |
chunks = np.array_split(cot_test, len(gpu_ids)) | |
mp.set_start_method("spawn", force=True) | |
queue = mp.Queue() | |
processes = [] | |
for idx, chunk in enumerate(chunks): | |
device = gpu_ids[idx % len(gpu_ids)] | |
device = f"cuda:{device}" | |
p = mp.Process(target=s_thread, args=(video_dir, model_path, device, chunk, idx, queue)) | |
processes.append(p) | |
p.start() | |
for process in processes: | |
process.join() | |
result = [] | |
for _ in range(len(chunks)): | |
res = queue.get() | |
result.extend(res) | |
res_saved = f"{'__'.join(model_path.split('/'))}_res.csv" | |
with open(res_saved, "w") as f: | |
f.write("video_id,is_correct,target,predict\n") | |
for res in result: | |
f.write(f"{res}\n") | |
accuracy, metrics = analyze_predictions(res_saved) | |
print("All processes finished.\n\n") | |