File size: 11,883 Bytes
9d9ac6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import json
import os
import sys
from pathlib import Path

import numpy as np
import pandas as pd
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from transformers import AutoTokenizer


sys.path.insert(0, os.path.join(str(Path(__file__).resolve().parents[2]), "src/third_party/InternVL/internvl_chat"))
from internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel  # type: ignore


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose(
        [
            T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=MEAN, std=STD),
        ]
    )
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size,
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert("RGB")
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values


def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array(
        [int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)]
    )
    return frame_indices


def load_video(
    video_path,
    bound=None,
    input_size=448,
    max_num=1,
    num_segments=32,
    cache_dir=".cache/expcache",
):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    video_cache_dir = video_path.split("/")[-2] + "_" + os.path.basename(video_path).split(".")[0]
    video_cache_dir = os.path.join(cache_dir, video_cache_dir)
    cache_filename = os.path.join(
        video_cache_dir,
        f"_bound-{bound}_input_size-{input_size}_max_num-{max_num}_num_segments-{num_segments}.pt",
    )
    if os.path.exists(cache_filename) and os.path.isfile(cache_filename):
        cache = torch.load(cache_filename, weights_only=True)
        pixel_values = cache["pixel_values"]
        num_patches_list = cache["num_patches_list"]

    else:
        pixel_values_list, num_patches_list = [], []
        transform = build_transform(input_size=input_size)
        frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)

        frame_indices = np.append(0, frame_indices)  # Add 0 at the beginning of the list
        frame_indices = np.append(frame_indices, max_frame)  # Add max_frame at the end of the list

        os.makedirs(video_cache_dir, exist_ok=True)

        idx = 0
        for frame_index in frame_indices:
            img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")

            img.save(os.path.join(video_cache_dir, f"frame_{frame_index}_tile_{idx}.png"))

            img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)

            pixel_values = [transform(tile) for tile in img]
            pixel_values = torch.stack(pixel_values)
            num_patches_list.append(pixel_values.shape[0])
            pixel_values_list.append(pixel_values)

            idx += 1
        pixel_values = torch.cat(pixel_values_list)

        os.makedirs(cache_dir, exist_ok=True)
        torch.save({"pixel_values": pixel_values, "num_patches_list": num_patches_list}, cache_filename)

    return pixel_values, num_patches_list


def analyze_predictions(file_path):
    # Read the CSV file
    df = pd.read_csv(file_path)

    # Calculate overall accuracy
    total_samples = len(df)
    correct_predictions = df["is_correct"].value_counts().get(True, 0)
    overall_accuracy = correct_predictions / total_samples

    # Initialize metrics for each class
    classes = ["A", "B", "C"]
    class_metrics = {}

    for cls in classes:
        # Filter for samples where target is this class
        true_class = df[df["target"] == cls]
        # Filter for samples where prediction is this class
        # pred_class = df[df["predict"] == cls]

        # Calculate TP, FP, FN
        TP = len(df[(df["target"] == cls) & (df["predict"] == cls)])
        FP = len(df[(df["target"] != cls) & (df["predict"] == cls)])
        FN = len(df[(df["target"] == cls) & (df["predict"] != cls)])

        # Calculate precision, recall, F1
        precision = TP / (TP + FP) if (TP + FP) > 0 else 0
        recall = TP / (TP + FN) if (TP + FN) > 0 else 0
        f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

        # Store metrics
        class_metrics[cls] = {
            "total_samples": len(true_class),
            "precision": precision,
            "recall": recall,
            "f1": f1,
            "true_positives": TP,
            "false_positives": FP,
            "false_negatives": FN,
        }

    print(f"Overall Accuracy: {overall_accuracy:.4f} ({correct_predictions}/{total_samples})")
    print()
    print("Indicators for each category:")

    for cls in classes:
        metrics = class_metrics[cls]
        print(f"  Class {cls}:")
        print(f"    Total Samples: {metrics['total_samples']}")
        print(f"    Precision: {metrics['precision']:.4f}")
        print(f"    Recall: {metrics['recall']:.4f}")
        print(f"    F1 Score: {metrics['f1']:.4f}")
        print(f"    True Positives: {metrics['true_positives']}")
        print(f"    False Positives: {metrics['false_positives']}")
        print(f"    False Negatives: {metrics['false_negatives']}")

    return overall_accuracy, class_metrics


def s_thread(video_dir, model_path, device, chunk, idx, queue):
    model = InternVLChatModel.from_pretrained(
        model_path,
        torch_dtype=torch.bfloat16,
        low_cpu_mem_usage=True,
        use_flash_attn=True,
    )
    model = model.eval().to(device)

    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)

    generation_config = dict(max_new_tokens=1024, do_sample=False)

    res = []
    for line in tqdm(chunk, position=idx, desc=f"Device {device}"):
        data = json.loads(line)

        video_path = os.path.join(video_dir, data["video"])
        ques = data["conversations"][0]["value"]

        target_ans = data["conversations"][1]["value"].split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip()

        pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
        pixel_values = pixel_values.to(torch.bfloat16).to(device)
        video_prefix = "".join([f"Frame{i + 1}: <image>\n" for i in range(len(num_patches_list))])
        question = video_prefix + f"{ques}"
        response = model.chat(
            tokenizer,
            pixel_values,
            question,
            generation_config,
            num_patches_list=num_patches_list,
            history=None,
            return_history=False,
        )

        try:
            ans = response.split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip()
        except Exception as e:
            print(f"Error: {e}, response: {response}")
            ans = response.strip()[0]

        is_correct = False
        if ans == target_ans:
            is_correct = True

        res.append(f"{video_path},{is_correct},{target_ans},{ans}")

    queue.put(res)


if __name__ == "__main__":
    import argparse

    import torch.multiprocessing as mp

    parser = argparse.ArgumentParser(description="eval script for mmlm")
    parser.add_argument("--model_path", type=str, help="Path to the model checkpoint.")
    parser.add_argument("--test_file", type=str, help="Path to the test file.")
    parser.add_argument("--video_dir", type=str, help="Path to the test video directory.")
    parser.add_argument("--gpuids", type=str, help="GPU ids to use.")

    # python eval.py --model_path /path/to/model --test_file /path/to/test_file --video_dir /path/to/video_dir --gpuids 0,1,2,3

    args = parser.parse_args()

    model_path = args.model_path
    test_file = args.test_file
    video_dir = args.video_dir

    gpu_ids = args.gpuids.split(",") if args.gpuids else ["0"]

    cot_test = Path(test_file).read_text().splitlines()

    chunks = np.array_split(cot_test, len(gpu_ids))

    mp.set_start_method("spawn", force=True)

    queue = mp.Queue()

    processes = []
    for idx, chunk in enumerate(chunks):
        device = gpu_ids[idx % len(gpu_ids)]
        device = f"cuda:{device}"

        p = mp.Process(target=s_thread, args=(video_dir, model_path, device, chunk, idx, queue))
        processes.append(p)
        p.start()

    for process in processes:
        process.join()

    result = []
    for _ in range(len(chunks)):
        res = queue.get()
        result.extend(res)

    res_saved = f"{'__'.join(model_path.split('/'))}_res.csv"
    with open(res_saved, "w") as f:
        f.write("video_id,is_correct,target,predict\n")
        for res in result:
            f.write(f"{res}\n")

    accuracy, metrics = analyze_predictions(res_saved)

    print("All processes finished.\n\n")