Spaces:
Running
Running
File size: 11,883 Bytes
9d9ac6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import json
import os
import sys
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from transformers import AutoTokenizer
sys.path.insert(0, os.path.join(str(Path(__file__).resolve().parents[2]), "src/third_party/InternVL/internvl_chat"))
from internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert("RGB")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array(
[int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)]
)
return frame_indices
def load_video(
video_path,
bound=None,
input_size=448,
max_num=1,
num_segments=32,
cache_dir=".cache/expcache",
):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
video_cache_dir = video_path.split("/")[-2] + "_" + os.path.basename(video_path).split(".")[0]
video_cache_dir = os.path.join(cache_dir, video_cache_dir)
cache_filename = os.path.join(
video_cache_dir,
f"_bound-{bound}_input_size-{input_size}_max_num-{max_num}_num_segments-{num_segments}.pt",
)
if os.path.exists(cache_filename) and os.path.isfile(cache_filename):
cache = torch.load(cache_filename, weights_only=True)
pixel_values = cache["pixel_values"]
num_patches_list = cache["num_patches_list"]
else:
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
frame_indices = np.append(0, frame_indices) # Add 0 at the beginning of the list
frame_indices = np.append(frame_indices, max_frame) # Add max_frame at the end of the list
os.makedirs(video_cache_dir, exist_ok=True)
idx = 0
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
img.save(os.path.join(video_cache_dir, f"frame_{frame_index}_tile_{idx}.png"))
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
idx += 1
pixel_values = torch.cat(pixel_values_list)
os.makedirs(cache_dir, exist_ok=True)
torch.save({"pixel_values": pixel_values, "num_patches_list": num_patches_list}, cache_filename)
return pixel_values, num_patches_list
def analyze_predictions(file_path):
# Read the CSV file
df = pd.read_csv(file_path)
# Calculate overall accuracy
total_samples = len(df)
correct_predictions = df["is_correct"].value_counts().get(True, 0)
overall_accuracy = correct_predictions / total_samples
# Initialize metrics for each class
classes = ["A", "B", "C"]
class_metrics = {}
for cls in classes:
# Filter for samples where target is this class
true_class = df[df["target"] == cls]
# Filter for samples where prediction is this class
# pred_class = df[df["predict"] == cls]
# Calculate TP, FP, FN
TP = len(df[(df["target"] == cls) & (df["predict"] == cls)])
FP = len(df[(df["target"] != cls) & (df["predict"] == cls)])
FN = len(df[(df["target"] == cls) & (df["predict"] != cls)])
# Calculate precision, recall, F1
precision = TP / (TP + FP) if (TP + FP) > 0 else 0
recall = TP / (TP + FN) if (TP + FN) > 0 else 0
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
# Store metrics
class_metrics[cls] = {
"total_samples": len(true_class),
"precision": precision,
"recall": recall,
"f1": f1,
"true_positives": TP,
"false_positives": FP,
"false_negatives": FN,
}
print(f"Overall Accuracy: {overall_accuracy:.4f} ({correct_predictions}/{total_samples})")
print()
print("Indicators for each category:")
for cls in classes:
metrics = class_metrics[cls]
print(f" Class {cls}:")
print(f" Total Samples: {metrics['total_samples']}")
print(f" Precision: {metrics['precision']:.4f}")
print(f" Recall: {metrics['recall']:.4f}")
print(f" F1 Score: {metrics['f1']:.4f}")
print(f" True Positives: {metrics['true_positives']}")
print(f" False Positives: {metrics['false_positives']}")
print(f" False Negatives: {metrics['false_negatives']}")
return overall_accuracy, class_metrics
def s_thread(video_dir, model_path, device, chunk, idx, queue):
model = InternVLChatModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
)
model = model.eval().to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=False)
res = []
for line in tqdm(chunk, position=idx, desc=f"Device {device}"):
data = json.loads(line)
video_path = os.path.join(video_dir, data["video"])
ques = data["conversations"][0]["value"]
target_ans = data["conversations"][1]["value"].split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip()
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).to(device)
video_prefix = "".join([f"Frame{i + 1}: <image>\n" for i in range(len(num_patches_list))])
question = video_prefix + f"{ques}"
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config,
num_patches_list=num_patches_list,
history=None,
return_history=False,
)
try:
ans = response.split("<CONCLUSION>")[1].split("</CONCLUSION>")[0].strip()
except Exception as e:
print(f"Error: {e}, response: {response}")
ans = response.strip()[0]
is_correct = False
if ans == target_ans:
is_correct = True
res.append(f"{video_path},{is_correct},{target_ans},{ans}")
queue.put(res)
if __name__ == "__main__":
import argparse
import torch.multiprocessing as mp
parser = argparse.ArgumentParser(description="eval script for mmlm")
parser.add_argument("--model_path", type=str, help="Path to the model checkpoint.")
parser.add_argument("--test_file", type=str, help="Path to the test file.")
parser.add_argument("--video_dir", type=str, help="Path to the test video directory.")
parser.add_argument("--gpuids", type=str, help="GPU ids to use.")
# python eval.py --model_path /path/to/model --test_file /path/to/test_file --video_dir /path/to/video_dir --gpuids 0,1,2,3
args = parser.parse_args()
model_path = args.model_path
test_file = args.test_file
video_dir = args.video_dir
gpu_ids = args.gpuids.split(",") if args.gpuids else ["0"]
cot_test = Path(test_file).read_text().splitlines()
chunks = np.array_split(cot_test, len(gpu_ids))
mp.set_start_method("spawn", force=True)
queue = mp.Queue()
processes = []
for idx, chunk in enumerate(chunks):
device = gpu_ids[idx % len(gpu_ids)]
device = f"cuda:{device}"
p = mp.Process(target=s_thread, args=(video_dir, model_path, device, chunk, idx, queue))
processes.append(p)
p.start()
for process in processes:
process.join()
result = []
for _ in range(len(chunks)):
res = queue.get()
result.extend(res)
res_saved = f"{'__'.join(model_path.split('/'))}_res.csv"
with open(res_saved, "w") as f:
f.write("video_id,is_correct,target,predict\n")
for res in result:
f.write(f"{res}\n")
accuracy, metrics = analyze_predictions(res_saved)
print("All processes finished.\n\n")
|