import json import os import sys from pathlib import Path import numpy as np import pandas as pd import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from tqdm import tqdm from transformers import AutoTokenizer sys.path.insert(0, os.path.join(str(Path(__file__).resolve().parents[2]), "src/third_party/InternVL/internvl_chat")) from internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose( [ T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD), ] ) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float("inf") best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num ) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size, ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert("RGB") transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array( [int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)] ) return frame_indices def load_video( video_path, bound=None, input_size=448, max_num=1, num_segments=32, cache_dir=".cache/expcache", ): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) video_cache_dir = video_path.split("/")[-2] + "_" + os.path.basename(video_path).split(".")[0] video_cache_dir = os.path.join(cache_dir, video_cache_dir) cache_filename = os.path.join( video_cache_dir, f"_bound-{bound}_input_size-{input_size}_max_num-{max_num}_num_segments-{num_segments}.pt", ) if os.path.exists(cache_filename) and os.path.isfile(cache_filename): cache = torch.load(cache_filename, weights_only=True) pixel_values = cache["pixel_values"] num_patches_list = cache["num_patches_list"] else: pixel_values_list, num_patches_list = [], [] transform = build_transform(input_size=input_size) frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) frame_indices = np.append(0, frame_indices) # Add 0 at the beginning of the list frame_indices = np.append(frame_indices, max_frame) # Add max_frame at the end of the list os.makedirs(video_cache_dir, exist_ok=True) idx = 0 for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB") img.save(os.path.join(video_cache_dir, f"frame_{frame_index}_tile_{idx}.png")) img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(tile) for tile in img] pixel_values = torch.stack(pixel_values) num_patches_list.append(pixel_values.shape[0]) pixel_values_list.append(pixel_values) idx += 1 pixel_values = torch.cat(pixel_values_list) os.makedirs(cache_dir, exist_ok=True) torch.save({"pixel_values": pixel_values, "num_patches_list": num_patches_list}, cache_filename) return pixel_values, num_patches_list def analyze_predictions(file_path): # Read the CSV file df = pd.read_csv(file_path) # Calculate overall accuracy total_samples = len(df) correct_predictions = df["is_correct"].value_counts().get(True, 0) overall_accuracy = correct_predictions / total_samples # Initialize metrics for each class classes = ["A", "B", "C"] class_metrics = {} for cls in classes: # Filter for samples where target is this class true_class = df[df["target"] == cls] # Filter for samples where prediction is this class # pred_class = df[df["predict"] == cls] # Calculate TP, FP, FN TP = len(df[(df["target"] == cls) & (df["predict"] == cls)]) FP = len(df[(df["target"] != cls) & (df["predict"] == cls)]) FN = len(df[(df["target"] == cls) & (df["predict"] != cls)]) # Calculate precision, recall, F1 precision = TP / (TP + FP) if (TP + FP) > 0 else 0 recall = TP / (TP + FN) if (TP + FN) > 0 else 0 f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 # Store metrics class_metrics[cls] = { "total_samples": len(true_class), "precision": precision, "recall": recall, "f1": f1, "true_positives": TP, "false_positives": FP, "false_negatives": FN, } print(f"Overall Accuracy: {overall_accuracy:.4f} ({correct_predictions}/{total_samples})") print() print("Indicators for each category:") for cls in classes: metrics = class_metrics[cls] print(f" Class {cls}:") print(f" Total Samples: {metrics['total_samples']}") print(f" Precision: {metrics['precision']:.4f}") print(f" Recall: {metrics['recall']:.4f}") print(f" F1 Score: {metrics['f1']:.4f}") print(f" True Positives: {metrics['true_positives']}") print(f" False Positives: {metrics['false_positives']}") print(f" False Negatives: {metrics['false_negatives']}") return overall_accuracy, class_metrics def s_thread(video_dir, model_path, device, chunk, idx, queue): model = InternVLChatModel.from_pretrained( model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, ) model = model.eval().to(device) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) generation_config = dict(max_new_tokens=1024, do_sample=False) res = [] for line in tqdm(chunk, position=idx, desc=f"Device {device}"): data = json.loads(line) video_path = os.path.join(video_dir, data["video"]) ques = data["conversations"][0]["value"] target_ans = data["conversations"][1]["value"].split("")[1].split("")[0].strip() pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) pixel_values = pixel_values.to(torch.bfloat16).to(device) video_prefix = "".join([f"Frame{i + 1}: \n" for i in range(len(num_patches_list))]) question = video_prefix + f"{ques}" response = model.chat( tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=False, ) try: ans = response.split("")[1].split("")[0].strip() except Exception as e: print(f"Error: {e}, response: {response}") ans = response.strip()[0] is_correct = False if ans == target_ans: is_correct = True res.append(f"{video_path},{is_correct},{target_ans},{ans}") queue.put(res) if __name__ == "__main__": import argparse import torch.multiprocessing as mp parser = argparse.ArgumentParser(description="eval script for mmlm") parser.add_argument("--model_path", type=str, help="Path to the model checkpoint.") parser.add_argument("--test_file", type=str, help="Path to the test file.") parser.add_argument("--video_dir", type=str, help="Path to the test video directory.") parser.add_argument("--gpuids", type=str, help="GPU ids to use.") # python eval.py --model_path /path/to/model --test_file /path/to/test_file --video_dir /path/to/video_dir --gpuids 0,1,2,3 args = parser.parse_args() model_path = args.model_path test_file = args.test_file video_dir = args.video_dir gpu_ids = args.gpuids.split(",") if args.gpuids else ["0"] cot_test = Path(test_file).read_text().splitlines() chunks = np.array_split(cot_test, len(gpu_ids)) mp.set_start_method("spawn", force=True) queue = mp.Queue() processes = [] for idx, chunk in enumerate(chunks): device = gpu_ids[idx % len(gpu_ids)] device = f"cuda:{device}" p = mp.Process(target=s_thread, args=(video_dir, model_path, device, chunk, idx, queue)) processes.append(p) p.start() for process in processes: process.join() result = [] for _ in range(len(chunks)): res = queue.get() result.extend(res) res_saved = f"{'__'.join(model_path.split('/'))}_res.csv" with open(res_saved, "w") as f: f.write("video_id,is_correct,target,predict\n") for res in result: f.write(f"{res}\n") accuracy, metrics = analyze_predictions(res_saved) print("All processes finished.\n\n")