import json
import os
import sys
from pathlib import Path
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
from transformers import AutoTokenizer
sys.path.insert(0, os.path.join(str(Path(__file__).resolve().parents[2]), "src/third_party/InternVL/internvl_chat"))
from internvl.model.internvl_chat.modeling_internvl_chat import InternVLChatModel # type: ignore
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert("RGB")
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array(
[int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments)]
)
return frame_indices
def load_video(
video_path,
bound=None,
input_size=448,
max_num=1,
num_segments=32,
cache_dir=".cache/expcache",
):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
video_cache_dir = video_path.split("/")[-2] + "_" + os.path.basename(video_path).split(".")[0]
video_cache_dir = os.path.join(cache_dir, video_cache_dir)
cache_filename = os.path.join(
video_cache_dir,
f"_bound-{bound}_input_size-{input_size}_max_num-{max_num}_num_segments-{num_segments}.pt",
)
if os.path.exists(cache_filename) and os.path.isfile(cache_filename):
cache = torch.load(cache_filename, weights_only=True)
pixel_values = cache["pixel_values"]
num_patches_list = cache["num_patches_list"]
else:
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
frame_indices = np.append(0, frame_indices) # Add 0 at the beginning of the list
frame_indices = np.append(frame_indices, max_frame) # Add max_frame at the end of the list
os.makedirs(video_cache_dir, exist_ok=True)
idx = 0
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
img.save(os.path.join(video_cache_dir, f"frame_{frame_index}_tile_{idx}.png"))
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
idx += 1
pixel_values = torch.cat(pixel_values_list)
os.makedirs(cache_dir, exist_ok=True)
torch.save({"pixel_values": pixel_values, "num_patches_list": num_patches_list}, cache_filename)
return pixel_values, num_patches_list
def analyze_predictions(file_path):
# Read the CSV file
df = pd.read_csv(file_path)
# Calculate overall accuracy
total_samples = len(df)
correct_predictions = df["is_correct"].value_counts().get(True, 0)
overall_accuracy = correct_predictions / total_samples
# Initialize metrics for each class
classes = ["A", "B", "C"]
class_metrics = {}
for cls in classes:
# Filter for samples where target is this class
true_class = df[df["target"] == cls]
# Filter for samples where prediction is this class
# pred_class = df[df["predict"] == cls]
# Calculate TP, FP, FN
TP = len(df[(df["target"] == cls) & (df["predict"] == cls)])
FP = len(df[(df["target"] != cls) & (df["predict"] == cls)])
FN = len(df[(df["target"] == cls) & (df["predict"] != cls)])
# Calculate precision, recall, F1
precision = TP / (TP + FP) if (TP + FP) > 0 else 0
recall = TP / (TP + FN) if (TP + FN) > 0 else 0
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
# Store metrics
class_metrics[cls] = {
"total_samples": len(true_class),
"precision": precision,
"recall": recall,
"f1": f1,
"true_positives": TP,
"false_positives": FP,
"false_negatives": FN,
}
print(f"Overall Accuracy: {overall_accuracy:.4f} ({correct_predictions}/{total_samples})")
print()
print("Indicators for each category:")
for cls in classes:
metrics = class_metrics[cls]
print(f" Class {cls}:")
print(f" Total Samples: {metrics['total_samples']}")
print(f" Precision: {metrics['precision']:.4f}")
print(f" Recall: {metrics['recall']:.4f}")
print(f" F1 Score: {metrics['f1']:.4f}")
print(f" True Positives: {metrics['true_positives']}")
print(f" False Positives: {metrics['false_positives']}")
print(f" False Negatives: {metrics['false_negatives']}")
return overall_accuracy, class_metrics
def s_thread(video_dir, model_path, device, chunk, idx, queue):
model = InternVLChatModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
)
model = model.eval().to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=False)
res = []
for line in tqdm(chunk, position=idx, desc=f"Device {device}"):
data = json.loads(line)
video_path = os.path.join(video_dir, data["video"])
ques = data["conversations"][0]["value"]
target_ans = data["conversations"][1]["value"].split("")[1].split("")[0].strip()
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).to(device)
video_prefix = "".join([f"Frame{i + 1}: \n" for i in range(len(num_patches_list))])
question = video_prefix + f"{ques}"
response = model.chat(
tokenizer,
pixel_values,
question,
generation_config,
num_patches_list=num_patches_list,
history=None,
return_history=False,
)
try:
ans = response.split("")[1].split("")[0].strip()
except Exception as e:
print(f"Error: {e}, response: {response}")
ans = response.strip()[0]
is_correct = False
if ans == target_ans:
is_correct = True
res.append(f"{video_path},{is_correct},{target_ans},{ans}")
queue.put(res)
if __name__ == "__main__":
import argparse
import torch.multiprocessing as mp
parser = argparse.ArgumentParser(description="eval script for mmlm")
parser.add_argument("--model_path", type=str, help="Path to the model checkpoint.")
parser.add_argument("--test_file", type=str, help="Path to the test file.")
parser.add_argument("--video_dir", type=str, help="Path to the test video directory.")
parser.add_argument("--gpuids", type=str, help="GPU ids to use.")
# python eval.py --model_path /path/to/model --test_file /path/to/test_file --video_dir /path/to/video_dir --gpuids 0,1,2,3
args = parser.parse_args()
model_path = args.model_path
test_file = args.test_file
video_dir = args.video_dir
gpu_ids = args.gpuids.split(",") if args.gpuids else ["0"]
cot_test = Path(test_file).read_text().splitlines()
chunks = np.array_split(cot_test, len(gpu_ids))
mp.set_start_method("spawn", force=True)
queue = mp.Queue()
processes = []
for idx, chunk in enumerate(chunks):
device = gpu_ids[idx % len(gpu_ids)]
device = f"cuda:{device}"
p = mp.Process(target=s_thread, args=(video_dir, model_path, device, chunk, idx, queue))
processes.append(p)
p.start()
for process in processes:
process.join()
result = []
for _ in range(len(chunks)):
res = queue.get()
result.extend(res)
res_saved = f"{'__'.join(model_path.split('/'))}_res.csv"
with open(res_saved, "w") as f:
f.write("video_id,is_correct,target,predict\n")
for res in result:
f.write(f"{res}\n")
accuracy, metrics = analyze_predictions(res_saved)
print("All processes finished.\n\n")