AustingDong
align
63b5fc2
import cv2
import numpy as np
import types
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image
from torch import nn
import spaces
from demo.modify_llama import *
class Visualization:
def __init__(self, model, register=True):
self.model = model
self.gradients = []
self.activations = []
self.hooks = []
if register:
self._register_hooks()
def _register_hooks(self):
for layer in self.target_layers:
self.hooks.append(layer.register_forward_hook(self._forward_hook))
self.hooks.append(layer.register_backward_hook(self._backward_hook))
def _forward_hook(self, module, input, output):
# print("forward_hook: self_attn_input: ", input)
self.activations.append(output)
def _backward_hook(self, module, grad_in, grad_out):
self.gradients.append(grad_out[0])
def _modify_layers(self):
for layer in self.target_layers:
setattr(layer, "attn_gradients", None)
setattr(layer, "attention_map", None)
layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer)
layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer)
layer.save_attn_map = types.MethodType(save_attn_map, layer)
layer.get_attn_map = types.MethodType(get_attn_map, layer)
def _forward_activate_hooks(self, module, input, output):
# print("forward_activate_hool: module: ", module)
# print("forward_activate_hook: self_attn_input: ", input)
attn_output, attn_weights = output # Unpack outputs
# print("attn_output shape:", attn_output.shape)
# print("attn_weights shape:", attn_weights.shape)
module.save_attn_map(attn_weights)
attn_weights.register_hook(module.save_attn_gradients)
def _register_hooks_activations(self):
for layer in self.target_layers:
if hasattr(layer, "q_proj"): # is an attention layer
self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks))
def remove_hooks(self):
for hook in self.hooks:
hook.remove()
def setup_grads(self):
torch.autograd.set_detect_anomaly(True)
for param in self.model.parameters():
param.requires_grad = False
for layer in self.target_layers:
for param in layer.parameters():
param.requires_grad = True
def forward_backward(self):
raise NotImplementedError
def grad_cam_vis(self):
self.model.zero_grad()
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
act = F.relu(act[0])
grad_weights = grad.mean(dim=-1, keepdim=True)
# print("act shape", act.shape)
# print("grad_weights shape", grad_weights.shape)
# cam = (act * grad_weights).sum(dim=-1)
cam, _ = (act * grad_weights).max(dim=-1)
print("cam_shape: ", cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
cam_sum = F.relu(cam_sum)
return cam_sum
def grad_cam_llm(self, mean_inside=False):
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
if mean_inside:
act = act.mean(dim=1)
grad = F.relu(grad.mean(dim=1))
cam = act * grad
else:
cam = act * grad
cam = act * grad.sum(dim=1)
print(cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
cam_sum = F.relu(cam_sum)
return cam_sum
def attention_map(self):
raise NotImplementedError
def attn_guided_cam(self):
cams = []
for act, grad in zip(self.activations, self.gradients):
# print("act shape", act.shape)
# print("grad shape", grad.shape)
grad = F.relu(grad)
# cam = act
# cam = grad
cam = act * grad # shape: [1, heads, seq_len, seq_len]
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
cam = cam.to(torch.float32).detach().cpu()
cams.append(cam)
return cams
def process(self, cam_sum, thresholding=True, remove_cls=False, normalize=True):
cam_sum = cam_sum.to(torch.float32)
# thresholding
if thresholding:
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# Remove CLS
if remove_cls:
cam_sum = cam_sum[0, 1:]
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
# print(f"Detected grid size: {grid_size}x{grid_size}")
cam_sum = cam_sum.view(grid_size, grid_size).detach()
# Normalize
if normalize:
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
return cam_sum, grid_size
def process_multiple(self, cam_sum, start_idx, images_seq_mask, thresholding=True, normalize=True):
cam_sum = cam_sum.to(torch.float32)
# thresholding
if thresholding:
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# cam_sum shape: [1, seq_len, seq_len]
cam_sum_lst = []
cam_sum_raw = cam_sum
start = start_idx
for i in range(start, cam_sum_raw.shape[1]):
cam_sum = cam_sum_raw[:, i, :] # shape: [1: seq_len]
cam_sum = cam_sum[images_seq_mask].unsqueeze(0) # shape: [1, img_seq_len]
# print("cam_sum shape: ", cam_sum.shape)
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
cam_sum = cam_sum.view(grid_size, grid_size)
if normalize:
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum = cam_sum.detach().to("cpu")
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size
def process_multiple_acc(self, cams, start_idx, images_seq_mask, normalize=False, accumulate_method="sum"):
cam_sum_lst = []
for i in range(start_idx, cams[0].shape[1]):
cam_sum = None
for layer, cam_l in enumerate(cams):
cam_l_i = cam_l[0, i, :] # shape: [1: seq_len]
cam_l_i = cam_l_i[images_seq_mask].unsqueeze(0) # shape: [1, img_seq_len]
num_patches = cam_l_i.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
# Fix the reshaping step dynamically
cam_reshaped = cam_l_i.view(grid_size, grid_size)
if normalize:
cam_reshaped = (cam_reshaped - cam_reshaped.min()) / (cam_reshaped.max() - cam_reshaped.min())
if cam_sum == None:
cam_sum = cam_reshaped
else:
if accumulate_method == "sum":
cam_sum += cam_reshaped
elif accumulate_method == "mult":
cam_sum *= cam_reshaped + 1
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size
def generate_cam(self, input_tensor, target_token_idx=None):
raise NotImplementedError
class VisualizationClip(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model)
@spaces.GPU(duration=120)
def forward_backward(self, input_tensor, visual_method, target_token_idx):
output_full = self.model(**input_tensor)
if target_token_idx is None:
target_token_idx = torch.argmax(output_full.logits, dim=1).item()
if visual_method == "CLS":
output = output_full.image_embeds
elif visual_method == "avg":
output = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).mean(dim=1)
else:
output, _ = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).max(dim=1)
output.backward(output_full.text_embeds[target_token_idx:target_token_idx+1], retain_graph=True)
return output_full
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, target_token_idx=None, visual_method="CLS"):
self.setup_grads()
# Forward Backward pass
output_full = self.forward_backward(input_tensor, visual_method, target_token_idx)
cam_sum = self.grad_cam_vis()
cam_sum, grid_size = self.process(cam_sum)
return cam_sum, output_full, grid_size
class VisualizationJanus(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model)
self._modify_layers()
self._register_hooks_activations()
def forward_backward(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model"):
# Forward
image_embeddings, inputs_embeddings, outputs = self.model(input_tensor, tokenizer, temperature, top_p)
print(input_tensor.keys())
input_ids = input_tensor["input_ids"]
start_idx = 620
self.model.zero_grad()
logits = outputs.logits
if target_token_idx == -1:
loss = logits.max(dim=-1).values.sum()
else:
loss = logits.max(dim=-1).values[0, start_idx + target_token_idx]
loss.backward()
self.activations = self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"):
self.setup_grads()
# Forward Backward pass
self.forward_backward(input_tensor, tokenizer, temperature, top_p, target_token_idx, visual_method, focus)
start_idx = 620
images_seq_mask = input_tensor.images_seq_mask[0].detach().cpu().tolist()
cams = self.attn_guided_cam()
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method)
return cam_sum_lst, grid_size, start_idx
class VisualizationLLaVA(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model, register=False)
self._modify_layers()
self._register_hooks_activations()
def forward_backward(self, inputs):
# Forward pass
outputs_raw = self.model(**inputs)
self.model.zero_grad()
print("outputs_raw", outputs_raw)
logits = outputs_raw.logits
loss = logits.max(dim=-1).values.sum()
loss.backward()
self.activations = [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
@spaces.GPU(duration=120)
def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"):
self.setup_grads()
self.forward_backward(inputs)
# get image masks
images_seq_mask = []
last = 0
for i in range(inputs["input_ids"].shape[1]):
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item())
if (decoded_token == "<image>"):
images_seq_mask.append(True)
last = i
else:
images_seq_mask.append(False)
# Aggregate activations and gradients from ALL layers
start_idx = last + 1
cams = self.attn_guided_cam()
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method)
return cam_sum_lst, grid_size, start_idx
class VisualizationChartGemma(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model, register=True)
self._modify_layers()
self._register_hooks_activations()
def forward_backward(self, inputs, focus, start_idx, target_token_idx, visual_method="softmax"):
outputs_raw = self.model(**inputs, output_hidden_states=True)
if focus == "Language Model":
self.model.zero_grad()
print("logits shape:", outputs_raw.logits.shape)
print("start_idx:", start_idx)
logits = outputs_raw.logits
if target_token_idx == -1:
loss = logits.max(dim=-1).values.sum()
else:
loss = logits.max(dim=-1).values[0, start_idx + target_token_idx]
loss.backward()
self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
@spaces.GPU(duration=120)
def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"):
# Forward pass
self.setup_grads()
# get image masks
images_seq_mask = []
last = 0
for i in range(inputs["input_ids"].shape[1]):
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item())
if (decoded_token == "<image>"):
images_seq_mask.append(True)
last = i
else:
images_seq_mask.append(False)
start_idx = last + 1
self.forward_backward(inputs, focus, start_idx, target_token_idx, visual_method)
cams = self.attn_guided_cam()
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method)
# cams shape: [layers, 1, seq_len, seq_len]
return cam_sum_lst, grid_size, start_idx
def generate_gradcam(
cam,
image,
size = (384, 384),
alpha=0.5,
colormap=cv2.COLORMAP_JET,
aggregation='mean',
normalize=False
):
"""
Generates a heatmap overlay on top of the input image.
Parameters:
cam (torch.Tensor): A tensor of shape (C, H, W) representing the
intermediate activations or gradients at the target layer.
image (PIL.Image): The original image.
size (tuple): The desired size of the heatmap overlay (default (384, 384)).
alpha (float): The blending factor for the heatmap overlay (default 0.5).
colormap (int): OpenCV colormap to apply (default cv2.COLORMAP_JET).
aggregation (str): How to aggregate across channels; either 'mean' or 'sum'.
normalize (bool): Whether to normalize the heatmap (default False).
Returns:
PIL.Image: The image overlaid with the heatmap.
"""
if normalize:
cam_min, cam_max = cam.min(), cam.max()
cam = cam - cam_min
cam = cam / (cam_max - cam_min)
# Convert tensor to numpy array
cam = torch.nn.functional.interpolate(cam.unsqueeze(0).unsqueeze(0), size=size, mode='bilinear').squeeze()
cam_np = cam.squeeze().detach().cpu().numpy()
# Apply Gaussian blur for smoother heatmaps
cam_np = cv2.GaussianBlur(cam_np, (5,5), sigmaX=0.8)
# Resize the cam to match the image size
width, height = size
cam_resized = cv2.resize(cam_np, (width, height))
# Convert the normalized map to a heatmap (0-255 uint8)
heatmap = np.uint8(255 * cam_resized)
heatmap = cv2.applyColorMap(heatmap, colormap)
# OpenCV produces heatmaps in BGR, so convert to RGB for consistency
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
# Convert original image to a numpy array
image_np = np.array(image)
image_np = cv2.resize(image_np, (width, height))
# Blend the heatmap with the original image
overlay = cv2.addWeighted(image_np, 1 - alpha, heatmap, alpha, 0)
return Image.fromarray(overlay)