|
import cv2 |
|
import numpy as np |
|
import types |
|
import torch |
|
import torch.nn.functional as F |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from torch import nn |
|
import spaces |
|
from demo.modify_llama import * |
|
|
|
class Visualization: |
|
def __init__(self, model, register=True): |
|
self.model = model |
|
self.gradients = [] |
|
self.activations = [] |
|
self.hooks = [] |
|
if register: |
|
self._register_hooks() |
|
|
|
def _register_hooks(self): |
|
for layer in self.target_layers: |
|
self.hooks.append(layer.register_forward_hook(self._forward_hook)) |
|
self.hooks.append(layer.register_backward_hook(self._backward_hook)) |
|
|
|
def _forward_hook(self, module, input, output): |
|
|
|
self.activations.append(output) |
|
|
|
def _backward_hook(self, module, grad_in, grad_out): |
|
self.gradients.append(grad_out[0]) |
|
|
|
def _modify_layers(self): |
|
for layer in self.target_layers: |
|
setattr(layer, "attn_gradients", None) |
|
setattr(layer, "attention_map", None) |
|
|
|
layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer) |
|
layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer) |
|
layer.save_attn_map = types.MethodType(save_attn_map, layer) |
|
layer.get_attn_map = types.MethodType(get_attn_map, layer) |
|
|
|
def _forward_activate_hooks(self, module, input, output): |
|
|
|
|
|
|
|
attn_output, attn_weights = output |
|
|
|
|
|
module.save_attn_map(attn_weights) |
|
attn_weights.register_hook(module.save_attn_gradients) |
|
|
|
def _register_hooks_activations(self): |
|
for layer in self.target_layers: |
|
if hasattr(layer, "q_proj"): |
|
self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks)) |
|
|
|
|
|
def remove_hooks(self): |
|
for hook in self.hooks: |
|
hook.remove() |
|
|
|
def setup_grads(self): |
|
torch.autograd.set_detect_anomaly(True) |
|
for param in self.model.parameters(): |
|
param.requires_grad = False |
|
|
|
for layer in self.target_layers: |
|
for param in layer.parameters(): |
|
param.requires_grad = True |
|
|
|
def forward_backward(self): |
|
raise NotImplementedError |
|
|
|
def grad_cam_vis(self): |
|
self.model.zero_grad() |
|
cam_sum = None |
|
for act, grad in zip(self.activations, self.gradients): |
|
|
|
act = F.relu(act[0]) |
|
|
|
grad_weights = grad.mean(dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
|
|
|
cam, _ = (act * grad_weights).max(dim=-1) |
|
|
|
print("cam_shape: ", cam.shape) |
|
|
|
|
|
if cam_sum is None: |
|
cam_sum = cam |
|
else: |
|
cam_sum += cam |
|
|
|
cam_sum = F.relu(cam_sum) |
|
return cam_sum |
|
|
|
|
|
|
|
def grad_cam_llm(self, mean_inside=False): |
|
|
|
cam_sum = None |
|
for act, grad in zip(self.activations, self.gradients): |
|
|
|
if mean_inside: |
|
act = act.mean(dim=1) |
|
grad = F.relu(grad.mean(dim=1)) |
|
cam = act * grad |
|
else: |
|
cam = act * grad |
|
cam = act * grad.sum(dim=1) |
|
|
|
print(cam.shape) |
|
|
|
|
|
if cam_sum is None: |
|
cam_sum = cam |
|
else: |
|
cam_sum += cam |
|
|
|
cam_sum = F.relu(cam_sum) |
|
return cam_sum |
|
|
|
def attention_map(self): |
|
raise NotImplementedError |
|
|
|
def attn_guided_cam(self): |
|
|
|
cams = [] |
|
for act, grad in zip(self.activations, self.gradients): |
|
|
|
|
|
|
|
grad = F.relu(grad) |
|
|
|
|
|
|
|
cam = act * grad |
|
|
|
cam = cam.sum(dim=1) |
|
cam = cam.to(torch.float32).detach().cpu() |
|
cams.append(cam) |
|
return cams |
|
|
|
|
|
def process(self, cam_sum, thresholding=True, remove_cls=False, normalize=True): |
|
|
|
cam_sum = cam_sum.to(torch.float32) |
|
|
|
|
|
if thresholding: |
|
percentile = torch.quantile(cam_sum, 0.2) |
|
cam_sum[cam_sum < percentile] = 0 |
|
|
|
|
|
if remove_cls: |
|
cam_sum = cam_sum[0, 1:] |
|
|
|
num_patches = cam_sum.shape[-1] |
|
grid_size = int(num_patches ** 0.5) |
|
|
|
cam_sum = cam_sum.view(grid_size, grid_size).detach() |
|
|
|
|
|
if normalize: |
|
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min()) |
|
|
|
return cam_sum, grid_size |
|
|
|
def process_multiple(self, cam_sum, start_idx, images_seq_mask, thresholding=True, normalize=True): |
|
cam_sum = cam_sum.to(torch.float32) |
|
|
|
if thresholding: |
|
percentile = torch.quantile(cam_sum, 0.2) |
|
cam_sum[cam_sum < percentile] = 0 |
|
|
|
|
|
|
|
cam_sum_lst = [] |
|
cam_sum_raw = cam_sum |
|
start = start_idx |
|
for i in range(start, cam_sum_raw.shape[1]): |
|
cam_sum = cam_sum_raw[:, i, :] |
|
cam_sum = cam_sum[images_seq_mask].unsqueeze(0) |
|
|
|
num_patches = cam_sum.shape[-1] |
|
grid_size = int(num_patches ** 0.5) |
|
|
|
cam_sum = cam_sum.view(grid_size, grid_size) |
|
if normalize: |
|
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min()) |
|
cam_sum = cam_sum.detach().to("cpu") |
|
cam_sum_lst.append(cam_sum) |
|
return cam_sum_lst, grid_size |
|
|
|
def process_multiple_acc(self, cams, start_idx, images_seq_mask, normalize=False, accumulate_method="sum"): |
|
cam_sum_lst = [] |
|
for i in range(start_idx, cams[0].shape[1]): |
|
cam_sum = None |
|
for layer, cam_l in enumerate(cams): |
|
cam_l_i = cam_l[0, i, :] |
|
|
|
cam_l_i = cam_l_i[images_seq_mask].unsqueeze(0) |
|
|
|
num_patches = cam_l_i.shape[-1] |
|
grid_size = int(num_patches ** 0.5) |
|
|
|
|
|
cam_reshaped = cam_l_i.view(grid_size, grid_size) |
|
|
|
if normalize: |
|
cam_reshaped = (cam_reshaped - cam_reshaped.min()) / (cam_reshaped.max() - cam_reshaped.min()) |
|
if cam_sum == None: |
|
cam_sum = cam_reshaped |
|
else: |
|
if accumulate_method == "sum": |
|
cam_sum += cam_reshaped |
|
elif accumulate_method == "mult": |
|
cam_sum *= cam_reshaped + 1 |
|
|
|
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min()) |
|
cam_sum_lst.append(cam_sum) |
|
return cam_sum_lst, grid_size |
|
|
|
def generate_cam(self, input_tensor, target_token_idx=None): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
class VisualizationClip(Visualization): |
|
def __init__(self, model, target_layers): |
|
self.target_layers = target_layers |
|
super().__init__(model) |
|
|
|
@spaces.GPU(duration=120) |
|
def forward_backward(self, input_tensor, visual_method, target_token_idx): |
|
output_full = self.model(**input_tensor) |
|
|
|
if target_token_idx is None: |
|
target_token_idx = torch.argmax(output_full.logits, dim=1).item() |
|
|
|
if visual_method == "CLS": |
|
output = output_full.image_embeds |
|
elif visual_method == "avg": |
|
output = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).mean(dim=1) |
|
else: |
|
output, _ = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).max(dim=1) |
|
|
|
|
|
output.backward(output_full.text_embeds[target_token_idx:target_token_idx+1], retain_graph=True) |
|
return output_full |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def generate_cam(self, input_tensor, target_token_idx=None, visual_method="CLS"): |
|
self.setup_grads() |
|
|
|
output_full = self.forward_backward(input_tensor, visual_method, target_token_idx) |
|
|
|
cam_sum = self.grad_cam_vis() |
|
cam_sum, grid_size = self.process(cam_sum) |
|
|
|
return cam_sum, output_full, grid_size |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VisualizationJanus(Visualization): |
|
def __init__(self, model, target_layers): |
|
self.target_layers = target_layers |
|
super().__init__(model) |
|
self._modify_layers() |
|
self._register_hooks_activations() |
|
|
|
def forward_backward(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model"): |
|
|
|
image_embeddings, inputs_embeddings, outputs = self.model(input_tensor, tokenizer, temperature, top_p) |
|
print(input_tensor.keys()) |
|
input_ids = input_tensor["input_ids"] |
|
start_idx = 620 |
|
self.model.zero_grad() |
|
|
|
logits = outputs.logits |
|
if target_token_idx == -1: |
|
loss = logits.max(dim=-1).values.sum() |
|
else: |
|
loss = logits.max(dim=-1).values[0, start_idx + target_token_idx] |
|
loss.backward() |
|
|
|
self.activations = self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers] |
|
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers] |
|
|
|
@spaces.GPU(duration=120) |
|
def generate_cam(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"): |
|
|
|
self.setup_grads() |
|
|
|
|
|
self.forward_backward(input_tensor, tokenizer, temperature, top_p, target_token_idx, visual_method, focus) |
|
|
|
start_idx = 620 |
|
|
|
images_seq_mask = input_tensor.images_seq_mask[0].detach().cpu().tolist() |
|
|
|
cams = self.attn_guided_cam() |
|
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method) |
|
|
|
|
|
return cam_sum_lst, grid_size, start_idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class VisualizationLLaVA(Visualization): |
|
def __init__(self, model, target_layers): |
|
self.target_layers = target_layers |
|
super().__init__(model, register=False) |
|
self._modify_layers() |
|
self._register_hooks_activations() |
|
|
|
def forward_backward(self, inputs): |
|
|
|
outputs_raw = self.model(**inputs) |
|
|
|
self.model.zero_grad() |
|
print("outputs_raw", outputs_raw) |
|
|
|
logits = outputs_raw.logits |
|
loss = logits.max(dim=-1).values.sum() |
|
loss.backward() |
|
self.activations = [layer.get_attn_map() for layer in self.target_layers] |
|
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers] |
|
|
|
@spaces.GPU(duration=120) |
|
def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"): |
|
|
|
self.setup_grads() |
|
self.forward_backward(inputs) |
|
|
|
|
|
images_seq_mask = [] |
|
last = 0 |
|
for i in range(inputs["input_ids"].shape[1]): |
|
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item()) |
|
if (decoded_token == "<image>"): |
|
images_seq_mask.append(True) |
|
last = i |
|
else: |
|
images_seq_mask.append(False) |
|
|
|
|
|
|
|
start_idx = last + 1 |
|
cams = self.attn_guided_cam() |
|
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method) |
|
|
|
return cam_sum_lst, grid_size, start_idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
class VisualizationChartGemma(Visualization): |
|
def __init__(self, model, target_layers): |
|
self.target_layers = target_layers |
|
super().__init__(model, register=True) |
|
self._modify_layers() |
|
self._register_hooks_activations() |
|
|
|
|
|
def forward_backward(self, inputs, focus, start_idx, target_token_idx, visual_method="softmax"): |
|
outputs_raw = self.model(**inputs, output_hidden_states=True) |
|
if focus == "Language Model": |
|
self.model.zero_grad() |
|
print("logits shape:", outputs_raw.logits.shape) |
|
print("start_idx:", start_idx) |
|
|
|
logits = outputs_raw.logits |
|
|
|
if target_token_idx == -1: |
|
loss = logits.max(dim=-1).values.sum() |
|
else: |
|
loss = logits.max(dim=-1).values[0, start_idx + target_token_idx] |
|
loss.backward() |
|
self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers] |
|
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers] |
|
|
|
@spaces.GPU(duration=120) |
|
def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"): |
|
|
|
|
|
self.setup_grads() |
|
|
|
|
|
images_seq_mask = [] |
|
last = 0 |
|
for i in range(inputs["input_ids"].shape[1]): |
|
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item()) |
|
if (decoded_token == "<image>"): |
|
images_seq_mask.append(True) |
|
last = i |
|
else: |
|
images_seq_mask.append(False) |
|
start_idx = last + 1 |
|
|
|
|
|
self.forward_backward(inputs, focus, start_idx, target_token_idx, visual_method) |
|
|
|
cams = self.attn_guided_cam() |
|
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method) |
|
|
|
|
|
|
|
|
|
|
|
return cam_sum_lst, grid_size, start_idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_gradcam( |
|
cam, |
|
image, |
|
size = (384, 384), |
|
alpha=0.5, |
|
colormap=cv2.COLORMAP_JET, |
|
aggregation='mean', |
|
normalize=False |
|
): |
|
""" |
|
Generates a heatmap overlay on top of the input image. |
|
|
|
Parameters: |
|
cam (torch.Tensor): A tensor of shape (C, H, W) representing the |
|
intermediate activations or gradients at the target layer. |
|
image (PIL.Image): The original image. |
|
size (tuple): The desired size of the heatmap overlay (default (384, 384)). |
|
alpha (float): The blending factor for the heatmap overlay (default 0.5). |
|
colormap (int): OpenCV colormap to apply (default cv2.COLORMAP_JET). |
|
aggregation (str): How to aggregate across channels; either 'mean' or 'sum'. |
|
normalize (bool): Whether to normalize the heatmap (default False). |
|
|
|
Returns: |
|
PIL.Image: The image overlaid with the heatmap. |
|
""" |
|
|
|
if normalize: |
|
cam_min, cam_max = cam.min(), cam.max() |
|
cam = cam - cam_min |
|
cam = cam / (cam_max - cam_min) |
|
|
|
cam = torch.nn.functional.interpolate(cam.unsqueeze(0).unsqueeze(0), size=size, mode='bilinear').squeeze() |
|
cam_np = cam.squeeze().detach().cpu().numpy() |
|
|
|
|
|
cam_np = cv2.GaussianBlur(cam_np, (5,5), sigmaX=0.8) |
|
|
|
|
|
width, height = size |
|
cam_resized = cv2.resize(cam_np, (width, height)) |
|
|
|
|
|
heatmap = np.uint8(255 * cam_resized) |
|
heatmap = cv2.applyColorMap(heatmap, colormap) |
|
|
|
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
image_np = np.array(image) |
|
image_np = cv2.resize(image_np, (width, height)) |
|
|
|
|
|
overlay = cv2.addWeighted(image_np, 1 - alpha, heatmap, alpha, 0) |
|
|
|
return Image.fromarray(overlay) |
|
|
|
|