import cv2 import numpy as np import types import torch import torch.nn.functional as F import matplotlib.pyplot as plt from PIL import Image from torch import nn import spaces from demo.modify_llama import * class Visualization: def __init__(self, model, register=True): self.model = model self.gradients = [] self.activations = [] self.hooks = [] if register: self._register_hooks() def _register_hooks(self): for layer in self.target_layers: self.hooks.append(layer.register_forward_hook(self._forward_hook)) self.hooks.append(layer.register_backward_hook(self._backward_hook)) def _forward_hook(self, module, input, output): # print("forward_hook: self_attn_input: ", input) self.activations.append(output) def _backward_hook(self, module, grad_in, grad_out): self.gradients.append(grad_out[0]) def _modify_layers(self): for layer in self.target_layers: setattr(layer, "attn_gradients", None) setattr(layer, "attention_map", None) layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer) layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer) layer.save_attn_map = types.MethodType(save_attn_map, layer) layer.get_attn_map = types.MethodType(get_attn_map, layer) def _forward_activate_hooks(self, module, input, output): # print("forward_activate_hool: module: ", module) # print("forward_activate_hook: self_attn_input: ", input) attn_output, attn_weights = output # Unpack outputs # print("attn_output shape:", attn_output.shape) # print("attn_weights shape:", attn_weights.shape) module.save_attn_map(attn_weights) attn_weights.register_hook(module.save_attn_gradients) def _register_hooks_activations(self): for layer in self.target_layers: if hasattr(layer, "q_proj"): # is an attention layer self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks)) def remove_hooks(self): for hook in self.hooks: hook.remove() def setup_grads(self): torch.autograd.set_detect_anomaly(True) for param in self.model.parameters(): param.requires_grad = False for layer in self.target_layers: for param in layer.parameters(): param.requires_grad = True def forward_backward(self): raise NotImplementedError def grad_cam_vis(self): self.model.zero_grad() cam_sum = None for act, grad in zip(self.activations, self.gradients): act = F.relu(act[0]) grad_weights = grad.mean(dim=-1, keepdim=True) # print("act shape", act.shape) # print("grad_weights shape", grad_weights.shape) # cam = (act * grad_weights).sum(dim=-1) cam, _ = (act * grad_weights).max(dim=-1) print("cam_shape: ", cam.shape) # Sum across all layers if cam_sum is None: cam_sum = cam else: cam_sum += cam cam_sum = F.relu(cam_sum) return cam_sum def grad_cam_llm(self, mean_inside=False): cam_sum = None for act, grad in zip(self.activations, self.gradients): if mean_inside: act = act.mean(dim=1) grad = F.relu(grad.mean(dim=1)) cam = act * grad else: cam = act * grad cam = act * grad.sum(dim=1) print(cam.shape) # Sum across all layers if cam_sum is None: cam_sum = cam else: cam_sum += cam cam_sum = F.relu(cam_sum) return cam_sum def attention_map(self): raise NotImplementedError def attn_guided_cam(self): cams = [] for act, grad in zip(self.activations, self.gradients): # print("act shape", act.shape) # print("grad shape", grad.shape) grad = F.relu(grad) # cam = act # cam = grad cam = act * grad # shape: [1, heads, seq_len, seq_len] cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len] cam = cam.to(torch.float32).detach().cpu() cams.append(cam) return cams def process(self, cam_sum, thresholding=True, remove_cls=False, normalize=True): cam_sum = cam_sum.to(torch.float32) # thresholding if thresholding: percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically cam_sum[cam_sum < percentile] = 0 # Remove CLS if remove_cls: cam_sum = cam_sum[0, 1:] num_patches = cam_sum.shape[-1] # Last dimension of CAM output grid_size = int(num_patches ** 0.5) # print(f"Detected grid size: {grid_size}x{grid_size}") cam_sum = cam_sum.view(grid_size, grid_size).detach() # Normalize if normalize: cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min()) return cam_sum, grid_size def process_multiple(self, cam_sum, start_idx, images_seq_mask, thresholding=True, normalize=True): cam_sum = cam_sum.to(torch.float32) # thresholding if thresholding: percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically cam_sum[cam_sum < percentile] = 0 # cam_sum shape: [1, seq_len, seq_len] cam_sum_lst = [] cam_sum_raw = cam_sum start = start_idx for i in range(start, cam_sum_raw.shape[1]): cam_sum = cam_sum_raw[:, i, :] # shape: [1: seq_len] cam_sum = cam_sum[images_seq_mask].unsqueeze(0) # shape: [1, img_seq_len] # print("cam_sum shape: ", cam_sum.shape) num_patches = cam_sum.shape[-1] # Last dimension of CAM output grid_size = int(num_patches ** 0.5) cam_sum = cam_sum.view(grid_size, grid_size) if normalize: cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min()) cam_sum = cam_sum.detach().to("cpu") cam_sum_lst.append(cam_sum) return cam_sum_lst, grid_size def process_multiple_acc(self, cams, start_idx, images_seq_mask, normalize=False, accumulate_method="sum"): cam_sum_lst = [] for i in range(start_idx, cams[0].shape[1]): cam_sum = None for layer, cam_l in enumerate(cams): cam_l_i = cam_l[0, i, :] # shape: [1: seq_len] cam_l_i = cam_l_i[images_seq_mask].unsqueeze(0) # shape: [1, img_seq_len] num_patches = cam_l_i.shape[-1] # Last dimension of CAM output grid_size = int(num_patches ** 0.5) # Fix the reshaping step dynamically cam_reshaped = cam_l_i.view(grid_size, grid_size) if normalize: cam_reshaped = (cam_reshaped - cam_reshaped.min()) / (cam_reshaped.max() - cam_reshaped.min()) if cam_sum == None: cam_sum = cam_reshaped else: if accumulate_method == "sum": cam_sum += cam_reshaped elif accumulate_method == "mult": cam_sum *= cam_reshaped + 1 cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min()) cam_sum_lst.append(cam_sum) return cam_sum_lst, grid_size def generate_cam(self, input_tensor, target_token_idx=None): raise NotImplementedError class VisualizationClip(Visualization): def __init__(self, model, target_layers): self.target_layers = target_layers super().__init__(model) @spaces.GPU(duration=120) def forward_backward(self, input_tensor, visual_method, target_token_idx): output_full = self.model(**input_tensor) if target_token_idx is None: target_token_idx = torch.argmax(output_full.logits, dim=1).item() if visual_method == "CLS": output = output_full.image_embeds elif visual_method == "avg": output = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).mean(dim=1) else: output, _ = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).max(dim=1) output.backward(output_full.text_embeds[target_token_idx:target_token_idx+1], retain_graph=True) return output_full @spaces.GPU(duration=120) def generate_cam(self, input_tensor, target_token_idx=None, visual_method="CLS"): self.setup_grads() # Forward Backward pass output_full = self.forward_backward(input_tensor, visual_method, target_token_idx) cam_sum = self.grad_cam_vis() cam_sum, grid_size = self.process(cam_sum) return cam_sum, output_full, grid_size class VisualizationJanus(Visualization): def __init__(self, model, target_layers): self.target_layers = target_layers super().__init__(model) self._modify_layers() self._register_hooks_activations() def forward_backward(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model"): # Forward image_embeddings, inputs_embeddings, outputs = self.model(input_tensor, tokenizer, temperature, top_p) print(input_tensor.keys()) input_ids = input_tensor["input_ids"] start_idx = 620 self.model.zero_grad() logits = outputs.logits if target_token_idx == -1: loss = logits.max(dim=-1).values.sum() else: loss = logits.max(dim=-1).values[0, start_idx + target_token_idx] loss.backward() self.activations = self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers] self.gradients = [layer.get_attn_gradients() for layer in self.target_layers] @spaces.GPU(duration=120) def generate_cam(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"): self.setup_grads() # Forward Backward pass self.forward_backward(input_tensor, tokenizer, temperature, top_p, target_token_idx, visual_method, focus) start_idx = 620 images_seq_mask = input_tensor.images_seq_mask[0].detach().cpu().tolist() cams = self.attn_guided_cam() cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method) return cam_sum_lst, grid_size, start_idx class VisualizationLLaVA(Visualization): def __init__(self, model, target_layers): self.target_layers = target_layers super().__init__(model, register=False) self._modify_layers() self._register_hooks_activations() def forward_backward(self, inputs): # Forward pass outputs_raw = self.model(**inputs) self.model.zero_grad() print("outputs_raw", outputs_raw) logits = outputs_raw.logits loss = logits.max(dim=-1).values.sum() loss.backward() self.activations = [layer.get_attn_map() for layer in self.target_layers] self.gradients = [layer.get_attn_gradients() for layer in self.target_layers] @spaces.GPU(duration=120) def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"): self.setup_grads() self.forward_backward(inputs) # get image masks images_seq_mask = [] last = 0 for i in range(inputs["input_ids"].shape[1]): decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item()) if (decoded_token == ""): images_seq_mask.append(True) last = i else: images_seq_mask.append(False) # Aggregate activations and gradients from ALL layers start_idx = last + 1 cams = self.attn_guided_cam() cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method) return cam_sum_lst, grid_size, start_idx class VisualizationChartGemma(Visualization): def __init__(self, model, target_layers): self.target_layers = target_layers super().__init__(model, register=True) self._modify_layers() self._register_hooks_activations() def forward_backward(self, inputs, focus, start_idx, target_token_idx, visual_method="softmax"): outputs_raw = self.model(**inputs, output_hidden_states=True) if focus == "Language Model": self.model.zero_grad() print("logits shape:", outputs_raw.logits.shape) print("start_idx:", start_idx) logits = outputs_raw.logits if target_token_idx == -1: loss = logits.max(dim=-1).values.sum() else: loss = logits.max(dim=-1).values[0, start_idx + target_token_idx] loss.backward() self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers] self.gradients = [layer.get_attn_gradients() for layer in self.target_layers] @spaces.GPU(duration=120) def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"): # Forward pass self.setup_grads() # get image masks images_seq_mask = [] last = 0 for i in range(inputs["input_ids"].shape[1]): decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item()) if (decoded_token == ""): images_seq_mask.append(True) last = i else: images_seq_mask.append(False) start_idx = last + 1 self.forward_backward(inputs, focus, start_idx, target_token_idx, visual_method) cams = self.attn_guided_cam() cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method) # cams shape: [layers, 1, seq_len, seq_len] return cam_sum_lst, grid_size, start_idx def generate_gradcam( cam, image, size = (384, 384), alpha=0.5, colormap=cv2.COLORMAP_JET, aggregation='mean', normalize=False ): """ Generates a heatmap overlay on top of the input image. Parameters: cam (torch.Tensor): A tensor of shape (C, H, W) representing the intermediate activations or gradients at the target layer. image (PIL.Image): The original image. size (tuple): The desired size of the heatmap overlay (default (384, 384)). alpha (float): The blending factor for the heatmap overlay (default 0.5). colormap (int): OpenCV colormap to apply (default cv2.COLORMAP_JET). aggregation (str): How to aggregate across channels; either 'mean' or 'sum'. normalize (bool): Whether to normalize the heatmap (default False). Returns: PIL.Image: The image overlaid with the heatmap. """ if normalize: cam_min, cam_max = cam.min(), cam.max() cam = cam - cam_min cam = cam / (cam_max - cam_min) # Convert tensor to numpy array cam = torch.nn.functional.interpolate(cam.unsqueeze(0).unsqueeze(0), size=size, mode='bilinear').squeeze() cam_np = cam.squeeze().detach().cpu().numpy() # Apply Gaussian blur for smoother heatmaps cam_np = cv2.GaussianBlur(cam_np, (5,5), sigmaX=0.8) # Resize the cam to match the image size width, height = size cam_resized = cv2.resize(cam_np, (width, height)) # Convert the normalized map to a heatmap (0-255 uint8) heatmap = np.uint8(255 * cam_resized) heatmap = cv2.applyColorMap(heatmap, colormap) # OpenCV produces heatmaps in BGR, so convert to RGB for consistency heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB) # Convert original image to a numpy array image_np = np.array(image) image_np = cv2.resize(image_np, (width, height)) # Blend the heatmap with the original image overlay = cv2.addWeighted(image_np, 1 - alpha, heatmap, alpha, 0) return Image.fromarray(overlay)