File size: 17,207 Bytes
369c141 73c356e 369c141 73c356e f59a9b2 369c141 73c356e 369c141 217eab6 369c141 217eab6 369c141 73c356e 369c141 73c356e 369c141 7e57874 369c141 217eab6 369c141 217eab6 369c141 ee8653b 369c141 ee8653b 369c141 f59a9b2 369c141 f59a9b2 369c141 f59a9b2 369c141 f59a9b2 369c141 f59a9b2 369c141 63b5fc2 369c141 73c356e f59a9b2 73c356e 63b5fc2 73c356e 63b5fc2 369c141 63b5fc2 369c141 f59a9b2 369c141 63b5fc2 73c356e 63b5fc2 73c356e 369c141 63b5fc2 369c141 63b5fc2 369c141 63b5fc2 369c141 ee8653b 369c141 6d117d1 369c141 f59a9b2 369c141 63b5fc2 369c141 217eab6 73c356e 63b5fc2 369c141 63b5fc2 369c141 f59a9b2 369c141 63b5fc2 369c141 f59a9b2 369c141 63b5fc2 369c141 63b5fc2 369c141 73c356e 369c141 217eab6 369c141 73c356e 369c141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
import cv2
import numpy as np
import types
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
from PIL import Image
from torch import nn
import spaces
from demo.modify_llama import *
class Visualization:
def __init__(self, model, register=True):
self.model = model
self.gradients = []
self.activations = []
self.hooks = []
if register:
self._register_hooks()
def _register_hooks(self):
for layer in self.target_layers:
self.hooks.append(layer.register_forward_hook(self._forward_hook))
self.hooks.append(layer.register_backward_hook(self._backward_hook))
def _forward_hook(self, module, input, output):
# print("forward_hook: self_attn_input: ", input)
self.activations.append(output)
def _backward_hook(self, module, grad_in, grad_out):
self.gradients.append(grad_out[0])
def _modify_layers(self):
for layer in self.target_layers:
setattr(layer, "attn_gradients", None)
setattr(layer, "attention_map", None)
layer.save_attn_gradients = types.MethodType(save_attn_gradients, layer)
layer.get_attn_gradients = types.MethodType(get_attn_gradients, layer)
layer.save_attn_map = types.MethodType(save_attn_map, layer)
layer.get_attn_map = types.MethodType(get_attn_map, layer)
def _forward_activate_hooks(self, module, input, output):
# print("forward_activate_hool: module: ", module)
# print("forward_activate_hook: self_attn_input: ", input)
attn_output, attn_weights = output # Unpack outputs
# print("attn_output shape:", attn_output.shape)
# print("attn_weights shape:", attn_weights.shape)
module.save_attn_map(attn_weights)
attn_weights.register_hook(module.save_attn_gradients)
def _register_hooks_activations(self):
for layer in self.target_layers:
if hasattr(layer, "q_proj"): # is an attention layer
self.hooks.append(layer.register_forward_hook(self._forward_activate_hooks))
def remove_hooks(self):
for hook in self.hooks:
hook.remove()
def setup_grads(self):
torch.autograd.set_detect_anomaly(True)
for param in self.model.parameters():
param.requires_grad = False
for layer in self.target_layers:
for param in layer.parameters():
param.requires_grad = True
def forward_backward(self):
raise NotImplementedError
def grad_cam_vis(self):
self.model.zero_grad()
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
act = F.relu(act[0])
grad_weights = grad.mean(dim=-1, keepdim=True)
# print("act shape", act.shape)
# print("grad_weights shape", grad_weights.shape)
# cam = (act * grad_weights).sum(dim=-1)
cam, _ = (act * grad_weights).max(dim=-1)
print("cam_shape: ", cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
cam_sum = F.relu(cam_sum)
return cam_sum
def grad_cam_llm(self, mean_inside=False):
cam_sum = None
for act, grad in zip(self.activations, self.gradients):
if mean_inside:
act = act.mean(dim=1)
grad = F.relu(grad.mean(dim=1))
cam = act * grad
else:
cam = act * grad
cam = act * grad.sum(dim=1)
print(cam.shape)
# Sum across all layers
if cam_sum is None:
cam_sum = cam
else:
cam_sum += cam
cam_sum = F.relu(cam_sum)
return cam_sum
def attention_map(self):
raise NotImplementedError
def attn_guided_cam(self):
cams = []
for act, grad in zip(self.activations, self.gradients):
# print("act shape", act.shape)
# print("grad shape", grad.shape)
grad = F.relu(grad)
# cam = act
# cam = grad
cam = act * grad # shape: [1, heads, seq_len, seq_len]
cam = cam.sum(dim=1) # shape: [1, seq_len, seq_len]
cam = cam.to(torch.float32).detach().cpu()
cams.append(cam)
return cams
def process(self, cam_sum, thresholding=True, remove_cls=False, normalize=True):
cam_sum = cam_sum.to(torch.float32)
# thresholding
if thresholding:
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# Remove CLS
if remove_cls:
cam_sum = cam_sum[0, 1:]
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
# print(f"Detected grid size: {grid_size}x{grid_size}")
cam_sum = cam_sum.view(grid_size, grid_size).detach()
# Normalize
if normalize:
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
return cam_sum, grid_size
def process_multiple(self, cam_sum, start_idx, images_seq_mask, thresholding=True, normalize=True):
cam_sum = cam_sum.to(torch.float32)
# thresholding
if thresholding:
percentile = torch.quantile(cam_sum, 0.2) # Adjust threshold dynamically
cam_sum[cam_sum < percentile] = 0
# cam_sum shape: [1, seq_len, seq_len]
cam_sum_lst = []
cam_sum_raw = cam_sum
start = start_idx
for i in range(start, cam_sum_raw.shape[1]):
cam_sum = cam_sum_raw[:, i, :] # shape: [1: seq_len]
cam_sum = cam_sum[images_seq_mask].unsqueeze(0) # shape: [1, img_seq_len]
# print("cam_sum shape: ", cam_sum.shape)
num_patches = cam_sum.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
cam_sum = cam_sum.view(grid_size, grid_size)
if normalize:
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum = cam_sum.detach().to("cpu")
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size
def process_multiple_acc(self, cams, start_idx, images_seq_mask, normalize=False, accumulate_method="sum"):
cam_sum_lst = []
for i in range(start_idx, cams[0].shape[1]):
cam_sum = None
for layer, cam_l in enumerate(cams):
cam_l_i = cam_l[0, i, :] # shape: [1: seq_len]
cam_l_i = cam_l_i[images_seq_mask].unsqueeze(0) # shape: [1, img_seq_len]
num_patches = cam_l_i.shape[-1] # Last dimension of CAM output
grid_size = int(num_patches ** 0.5)
# Fix the reshaping step dynamically
cam_reshaped = cam_l_i.view(grid_size, grid_size)
if normalize:
cam_reshaped = (cam_reshaped - cam_reshaped.min()) / (cam_reshaped.max() - cam_reshaped.min())
if cam_sum == None:
cam_sum = cam_reshaped
else:
if accumulate_method == "sum":
cam_sum += cam_reshaped
elif accumulate_method == "mult":
cam_sum *= cam_reshaped + 1
cam_sum = (cam_sum - cam_sum.min()) / (cam_sum.max() - cam_sum.min())
cam_sum_lst.append(cam_sum)
return cam_sum_lst, grid_size
def generate_cam(self, input_tensor, target_token_idx=None):
raise NotImplementedError
class VisualizationClip(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model)
@spaces.GPU(duration=120)
def forward_backward(self, input_tensor, visual_method, target_token_idx):
output_full = self.model(**input_tensor)
if target_token_idx is None:
target_token_idx = torch.argmax(output_full.logits, dim=1).item()
if visual_method == "CLS":
output = output_full.image_embeds
elif visual_method == "avg":
output = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).mean(dim=1)
else:
output, _ = self.model.visual_projection(output_full.vision_model_output.last_hidden_state).max(dim=1)
output.backward(output_full.text_embeds[target_token_idx:target_token_idx+1], retain_graph=True)
return output_full
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, target_token_idx=None, visual_method="CLS"):
self.setup_grads()
# Forward Backward pass
output_full = self.forward_backward(input_tensor, visual_method, target_token_idx)
cam_sum = self.grad_cam_vis()
cam_sum, grid_size = self.process(cam_sum)
return cam_sum, output_full, grid_size
class VisualizationJanus(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model)
self._modify_layers()
self._register_hooks_activations()
def forward_backward(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model"):
# Forward
image_embeddings, inputs_embeddings, outputs = self.model(input_tensor, tokenizer, temperature, top_p)
print(input_tensor.keys())
input_ids = input_tensor["input_ids"]
start_idx = 620
self.model.zero_grad()
logits = outputs.logits
if target_token_idx == -1:
loss = logits.max(dim=-1).values.sum()
else:
loss = logits.max(dim=-1).values[0, start_idx + target_token_idx]
loss.backward()
self.activations = self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
@spaces.GPU(duration=120)
def generate_cam(self, input_tensor, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"):
self.setup_grads()
# Forward Backward pass
self.forward_backward(input_tensor, tokenizer, temperature, top_p, target_token_idx, visual_method, focus)
start_idx = 620
images_seq_mask = input_tensor.images_seq_mask[0].detach().cpu().tolist()
cams = self.attn_guided_cam()
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method)
return cam_sum_lst, grid_size, start_idx
class VisualizationLLaVA(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model, register=False)
self._modify_layers()
self._register_hooks_activations()
def forward_backward(self, inputs):
# Forward pass
outputs_raw = self.model(**inputs)
self.model.zero_grad()
print("outputs_raw", outputs_raw)
logits = outputs_raw.logits
loss = logits.max(dim=-1).values.sum()
loss.backward()
self.activations = [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
@spaces.GPU(duration=120)
def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"):
self.setup_grads()
self.forward_backward(inputs)
# get image masks
images_seq_mask = []
last = 0
for i in range(inputs["input_ids"].shape[1]):
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item())
if (decoded_token == "<image>"):
images_seq_mask.append(True)
last = i
else:
images_seq_mask.append(False)
# Aggregate activations and gradients from ALL layers
start_idx = last + 1
cams = self.attn_guided_cam()
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method)
return cam_sum_lst, grid_size, start_idx
class VisualizationChartGemma(Visualization):
def __init__(self, model, target_layers):
self.target_layers = target_layers
super().__init__(model, register=True)
self._modify_layers()
self._register_hooks_activations()
def forward_backward(self, inputs, focus, start_idx, target_token_idx, visual_method="softmax"):
outputs_raw = self.model(**inputs, output_hidden_states=True)
if focus == "Language Model":
self.model.zero_grad()
print("logits shape:", outputs_raw.logits.shape)
print("start_idx:", start_idx)
logits = outputs_raw.logits
if target_token_idx == -1:
loss = logits.max(dim=-1).values.sum()
else:
loss = logits.max(dim=-1).values[0, start_idx + target_token_idx]
loss.backward()
self.activations = [layer.attn_sigmoid_weights for layer in self.target_layers] if visual_method == "sigmoid" else [layer.get_attn_map() for layer in self.target_layers]
self.gradients = [layer.get_attn_gradients() for layer in self.target_layers]
@spaces.GPU(duration=120)
def generate_cam(self, inputs, tokenizer, temperature, top_p, target_token_idx=None, visual_method="softmax", focus="Language Model", accumulate_method="sum"):
# Forward pass
self.setup_grads()
# get image masks
images_seq_mask = []
last = 0
for i in range(inputs["input_ids"].shape[1]):
decoded_token = tokenizer.decode(inputs["input_ids"][0][i].item())
if (decoded_token == "<image>"):
images_seq_mask.append(True)
last = i
else:
images_seq_mask.append(False)
start_idx = last + 1
self.forward_backward(inputs, focus, start_idx, target_token_idx, visual_method)
cams = self.attn_guided_cam()
cam_sum_lst, grid_size = self.process_multiple_acc(cams, start_idx, images_seq_mask, accumulate_method=accumulate_method)
# cams shape: [layers, 1, seq_len, seq_len]
return cam_sum_lst, grid_size, start_idx
def generate_gradcam(
cam,
image,
size = (384, 384),
alpha=0.5,
colormap=cv2.COLORMAP_JET,
aggregation='mean',
normalize=False
):
"""
Generates a heatmap overlay on top of the input image.
Parameters:
cam (torch.Tensor): A tensor of shape (C, H, W) representing the
intermediate activations or gradients at the target layer.
image (PIL.Image): The original image.
size (tuple): The desired size of the heatmap overlay (default (384, 384)).
alpha (float): The blending factor for the heatmap overlay (default 0.5).
colormap (int): OpenCV colormap to apply (default cv2.COLORMAP_JET).
aggregation (str): How to aggregate across channels; either 'mean' or 'sum'.
normalize (bool): Whether to normalize the heatmap (default False).
Returns:
PIL.Image: The image overlaid with the heatmap.
"""
if normalize:
cam_min, cam_max = cam.min(), cam.max()
cam = cam - cam_min
cam = cam / (cam_max - cam_min)
# Convert tensor to numpy array
cam = torch.nn.functional.interpolate(cam.unsqueeze(0).unsqueeze(0), size=size, mode='bilinear').squeeze()
cam_np = cam.squeeze().detach().cpu().numpy()
# Apply Gaussian blur for smoother heatmaps
cam_np = cv2.GaussianBlur(cam_np, (5,5), sigmaX=0.8)
# Resize the cam to match the image size
width, height = size
cam_resized = cv2.resize(cam_np, (width, height))
# Convert the normalized map to a heatmap (0-255 uint8)
heatmap = np.uint8(255 * cam_resized)
heatmap = cv2.applyColorMap(heatmap, colormap)
# OpenCV produces heatmaps in BGR, so convert to RGB for consistency
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
# Convert original image to a numpy array
image_np = np.array(image)
image_np = cv2.resize(image_np, (width, height))
# Blend the heatmap with the original image
overlay = cv2.addWeighted(image_np, 1 - alpha, heatmap, alpha, 0)
return Image.fromarray(overlay)
|