Spaces:
Paused
Paused
File size: 2,195 Bytes
31c0a7e 1d470e1 647defb 1d470e1 647defb 4ce17b6 1d470e1 31c0a7e 0408a46 5cccab7 1fa889b 5cccab7 5384fa5 1d470e1 1e43d20 1d470e1 7cb6f95 1d470e1 647defb 5cccab7 4cb7b20 0408a46 5384fa5 5175e14 31c0a7e 0408a46 31c0a7e d8173af 31c0a7e d8173af 0408a46 d8173af 31c0a7e 1e43d20 1d470e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from flask import Flask, request, jsonify
from llama_cpp import Llama
# from transformers import AutoModelForCausalLM, AutoTokenizer
llm = Llama.from_pretrained(
repo_id="bartowski/Llama-3.2-1B-Instruct-GGUF",
filename="Llama-3.2-1B-Instruct-IQ3_M.gguf",
)
# MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to("cpu")
app = Flask(__name__)
# DEFAULT_TEMPERATURE = 0.7
# DEFAULT_MAX_TOKENS = 150
# DEFAULT_TOP_P = 0.95
def generate_journal_suggestion(current_page):
try:
suggestion_prompt = (
f"""Pe baza înregistrării din jurnal: '{current_page}', generează o singură întrebare pe care utilizatorul ar putea să și-o pună într-un jurnal.
Întrebarea ar trebui să încurajeze reflecția personală mai profundă, explorarea sentimentelor sau clarificarea obiectivelor."""
)
# input_ids = tokenizer(suggestion_prompt, return_tensors="pt").input_ids.to("cpu")
# output_ids = model.generate(
# input_ids,
# max_length=DEFAULT_MAX_TOKENS,
# temperature=DEFAULT_TEMPERATURE,
# top_p=DEFAULT_TOP_P,
# do_sample=True,
# )
suggestion_response = llm.create_chat_completion(
messages = [
{
"role": "user",
"content": suggestion_prompt
}
]
)
return suggestion_response
# suggestion_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
except Exception as e:
return f"Error: {str(e)}"
@app.route("/", methods=["POST", "GET"])
def home():
return "Hi!"
@app.route("/chat", methods=["POST"])
def chat():
data = request.json
message = data.get("message", "")
system_message = data.get("system_message", "You are a friendly chatbot.")
journal_page = data.get("journal_page", "")
suggestion = ""
if journal_page:
suggestion = generate_journal_suggestion(journal_page)
return jsonify({"journal_suggestion": suggestion})
if __name__ == "__main__":
app.run(debug=True)
|