Spaces:
Runtime error
Runtime error
import cv2 | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torch.autograd import Variable | |
from torchvision import transforms | |
import torch.nn.functional as F | |
from flask import Flask, request, jsonify, send_file | |
import io | |
from werkzeug.utils import secure_filename | |
import warnings | |
warnings.filterwarnings("ignore") | |
# モデルと設定の初期化 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
class GOSNormalize(object): | |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
self.mean = mean | |
self.std = std | |
def __call__(self, image): | |
image = normalize(image, self.mean, self.std) | |
return image | |
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
def load_image(im_path, hypar): | |
im = im_reader(im_path) | |
im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
im = torch.divide(im, 255.0) | |
shape = torch.from_numpy(np.array(im_shp)) | |
return transform(im).unsqueeze(0), shape.unsqueeze(0) | |
def build_model(hypar, device): | |
net = hypar["model"] | |
if(hypar["model_digit"]=="half"): | |
net.half() | |
for layer in net.modules(): | |
if isinstance(layer, nn.BatchNorm2d): | |
layer.float() | |
net.to(device) | |
if(hypar["restore_model"]!=""): | |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) | |
net.to(device) | |
net.eval() | |
return net | |
def predict(net, inputs_val, shapes_val, hypar, device): | |
net.eval() | |
if(hypar["model_digit"]=="full"): | |
inputs_val = inputs_val.type(torch.FloatTensor) | |
else: | |
inputs_val = inputs_val.type(torch.HalfTensor) | |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) | |
ds_val = net(inputs_val_v)[0] | |
pred_val = ds_val[0][0,:,:,:] | |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
ma = torch.max(pred_val) | |
mi = torch.min(pred_val) | |
pred_val = (pred_val-mi)/(ma-mi) | |
if device == 'cuda': torch.cuda.empty_cache() | |
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) | |
# パラメータ設定 | |
hypar = { | |
"model_path": "./saved_models", | |
"restore_model": "isnet.pth", | |
"interm_sup": False, | |
"model_digit": "full", | |
"seed": 0, | |
"cache_size": [1024, 1024], | |
"input_size": [1024, 1024], | |
"crop_size": [1024, 1024], | |
"model": ISNetDIS() | |
} | |
# モデルをビルド | |
net = build_model(hypar, device) | |
app = Flask(__name__) | |
app.config['UPLOAD_FOLDER'] = 'uploads' | |
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) | |
def remove_background(): | |
if 'file' not in request.files: | |
return jsonify({"error": "No file provided"}), 400 | |
file = request.files['file'] | |
if file.filename == '': | |
return jsonify({"error": "No selected file"}), 400 | |
# ファイルを保存 | |
filename = secure_filename(file.filename) | |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) | |
file.save(filepath) | |
try: | |
# 画像処理 | |
image_tensor, orig_size = load_image(filepath, hypar) | |
mask = predict(net, image_tensor, orig_size, hypar, device) | |
pil_mask = Image.fromarray(mask).convert('L') | |
im_rgb = Image.open(filepath).convert("RGB") | |
im_rgba = im_rgb.copy() | |
im_rgba.putalpha(pil_mask) | |
# 結果をバイトデータとして返す | |
output_buffer = io.BytesIO() | |
im_rgba.save(output_buffer, format="PNG") | |
output_buffer.seek(0) | |
# 一時ファイルを削除 | |
os.remove(filepath) | |
return send_file( | |
output_buffer, | |
mimetype='image/png', | |
as_attachment=True, | |
download_name='output.png' | |
) | |
except Exception as e: | |
return jsonify({"error": str(e)}), 500 | |
def health_check(): | |
return jsonify({"status": "healthy"}), 200 | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=5000, debug=True) |