Spaces:
Runtime error
Runtime error
File size: 4,162 Bytes
bb4506e a9b3658 bb4506e a9b3658 27cf744 6b39384 e0d04f2 6b39384 27cf744 a9b3658 0c3285b a9b3658 27cf744 a9b3658 27cf744 a9b3658 27cf744 a9b3658 27cf744 e0d04f2 27cf744 bb4506e a9b3658 bb4506e a9b3658 27cf744 a9b3658 bb4506e a9b3658 bb4506e 27cf744 bb4506e e0d04f2 a9b3658 27cf744 e0d04f2 bb4506e 27cf744 bb4506e 27cf744 bb4506e 27cf744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, send_file
import io
from werkzeug.utils import secure_filename
import warnings
warnings.filterwarnings("ignore")
# モデルと設定の初期化
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
# パラメータ設定
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
# モデルをビルド
net = build_model(hypar, device)
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
@app.route('/api/remove-background', methods=['POST'])
def remove_background():
if 'file' not in request.files:
return jsonify({"error": "No file provided"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
# ファイルを保存
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
try:
# 画像処理
image_tensor, orig_size = load_image(filepath, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(filepath).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
# 結果をバイトデータとして返す
output_buffer = io.BytesIO()
im_rgba.save(output_buffer, format="PNG")
output_buffer.seek(0)
# 一時ファイルを削除
os.remove(filepath)
return send_file(
output_buffer,
mimetype='image/png',
as_attachment=True,
download_name='output.png'
)
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/api/health', methods=['GET'])
def health_check():
return jsonify({"status": "healthy"}), 200
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True) |