File size: 4,162 Bytes
bb4506e
a9b3658
bb4506e
a9b3658
 
 
 
 
27cf744
 
 
6b39384
e0d04f2
6b39384
27cf744
a9b3658
 
 
0c3285b
a9b3658
 
 
27cf744
 
a9b3658
 
27cf744
a9b3658
 
 
 
27cf744
a9b3658
27cf744
e0d04f2
27cf744
 
bb4506e
a9b3658
 
 
 
 
bb4506e
 
 
 
a9b3658
 
27cf744
a9b3658
bb4506e
a9b3658
 
 
bb4506e
27cf744
 
 
bb4506e
 
e0d04f2
a9b3658
 
27cf744
e0d04f2
bb4506e
27cf744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb4506e
 
27cf744
 
 
bb4506e
27cf744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, send_file
import io
from werkzeug.utils import secure_filename
import warnings
warnings.filterwarnings("ignore")

# モデルと設定の初期化
device = 'cuda' if torch.cuda.is_available() else 'cpu'

class GOSNormalize(object):
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar, device):
    net = hypar["model"]
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()
    net.to(device)
    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()
    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)
  
    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0,:,:,:]

    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi)

    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)

# パラメータ設定
hypar = {
    "model_path": "./saved_models",
    "restore_model": "isnet.pth",
    "interm_sup": False,
    "model_digit": "full",
    "seed": 0,
    "cache_size": [1024, 1024],
    "input_size": [1024, 1024],
    "crop_size": [1024, 1024],
    "model": ISNetDIS()
}

# モデルをビルド
net = build_model(hypar, device)

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)

@app.route('/api/remove-background', methods=['POST'])
def remove_background():
    if 'file' not in request.files:
        return jsonify({"error": "No file provided"}), 400
    
    file = request.files['file']
    if file.filename == '':
        return jsonify({"error": "No selected file"}), 400
    
    # ファイルを保存
    filename = secure_filename(file.filename)
    filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
    file.save(filepath)
    
    try:
        # 画像処理
        image_tensor, orig_size = load_image(filepath, hypar) 
        mask = predict(net, image_tensor, orig_size, hypar, device)
        
        pil_mask = Image.fromarray(mask).convert('L')
        im_rgb = Image.open(filepath).convert("RGB")
        im_rgba = im_rgb.copy()
        im_rgba.putalpha(pil_mask)
        
        # 結果をバイトデータとして返す
        output_buffer = io.BytesIO()
        im_rgba.save(output_buffer, format="PNG")
        output_buffer.seek(0)
        
        # 一時ファイルを削除
        os.remove(filepath)
        
        return send_file(
            output_buffer,
            mimetype='image/png',
            as_attachment=True,
            download_name='output.png'
        )
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route('/api/health', methods=['GET'])
def health_check():
    return jsonify({"status": "healthy"}), 200

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=True)