import cv2 import os from PIL import Image import numpy as np import torch from torch.autograd import Variable from torchvision import transforms import torch.nn.functional as F from flask import Flask, request, jsonify, send_file import io from werkzeug.utils import secure_filename import warnings warnings.filterwarnings("ignore") # モデルと設定の初期化 device = 'cuda' if torch.cuda.is_available() else 'cpu' class GOSNormalize(object): def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): self.mean = mean self.std = std def __call__(self, image): image = normalize(image, self.mean, self.std) return image transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) def load_image(im_path, hypar): im = im_reader(im_path) im, im_shp = im_preprocess(im, hypar["cache_size"]) im = torch.divide(im, 255.0) shape = torch.from_numpy(np.array(im_shp)) return transform(im).unsqueeze(0), shape.unsqueeze(0) def build_model(hypar, device): net = hypar["model"] if(hypar["model_digit"]=="half"): net.half() for layer in net.modules(): if isinstance(layer, nn.BatchNorm2d): layer.float() net.to(device) if(hypar["restore_model"]!=""): net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) net.to(device) net.eval() return net def predict(net, inputs_val, shapes_val, hypar, device): net.eval() if(hypar["model_digit"]=="full"): inputs_val = inputs_val.type(torch.FloatTensor) else: inputs_val = inputs_val.type(torch.HalfTensor) inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) ds_val = net(inputs_val_v)[0] pred_val = ds_val[0][0,:,:,:] pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) ma = torch.max(pred_val) mi = torch.min(pred_val) pred_val = (pred_val-mi)/(ma-mi) if device == 'cuda': torch.cuda.empty_cache() return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # パラメータ設定 hypar = { "model_path": "./saved_models", "restore_model": "isnet.pth", "interm_sup": False, "model_digit": "full", "seed": 0, "cache_size": [1024, 1024], "input_size": [1024, 1024], "crop_size": [1024, 1024], "model": ISNetDIS() } # モデルをビルド net = build_model(hypar, device) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = 'uploads' os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) @app.route('/api/remove-background', methods=['POST']) def remove_background(): if 'file' not in request.files: return jsonify({"error": "No file provided"}), 400 file = request.files['file'] if file.filename == '': return jsonify({"error": "No selected file"}), 400 # ファイルを保存 filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) try: # 画像処理 image_tensor, orig_size = load_image(filepath, hypar) mask = predict(net, image_tensor, orig_size, hypar, device) pil_mask = Image.fromarray(mask).convert('L') im_rgb = Image.open(filepath).convert("RGB") im_rgba = im_rgb.copy() im_rgba.putalpha(pil_mask) # 結果をバイトデータとして返す output_buffer = io.BytesIO() im_rgba.save(output_buffer, format="PNG") output_buffer.seek(0) # 一時ファイルを削除 os.remove(filepath) return send_file( output_buffer, mimetype='image/png', as_attachment=True, download_name='output.png' ) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/api/health', methods=['GET']) def health_check(): return jsonify({"status": "healthy"}), 200 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)