|
|
|
import argparse |
|
import tempfile |
|
from functools import partial |
|
from pathlib import Path |
|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
import numpy as np |
|
import torch |
|
from mmengine.config import Config, DictAction |
|
from mmengine.logging import MMLogger |
|
from mmengine.model import revert_sync_batchnorm |
|
from mmengine.registry import init_default_scope |
|
from mmengine.runner import Runner |
|
|
|
from mmdet.registry import MODELS |
|
|
|
try: |
|
from mmengine.analysis import get_model_complexity_info |
|
from mmengine.analysis.print_helper import _format_size |
|
except ImportError: |
|
raise ImportError('Please upgrade mmengine >= 0.6.0') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Get a detector flops') |
|
parser.add_argument('--config',default='./configs/specdetr_sb-2s-100e_hsi.py', help='train config file path') |
|
parser.add_argument( |
|
'--num-images', |
|
type=int, |
|
default=1, |
|
help='num images of calculate model flops') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def inference(args, logger): |
|
if str(torch.__version__) < '1.12': |
|
logger.warning( |
|
'Some config files, such as configs/yolact and configs/detectors,' |
|
'may have compatibility issues with torch.jit when torch<1.12. ' |
|
'If you want to calculate flops for these models, ' |
|
'please make sure your pytorch version is >=1.12.') |
|
|
|
config_name = Path(args.config) |
|
if not config_name.exists(): |
|
logger.error(f'{config_name} not found.') |
|
|
|
cfg = Config.fromfile(args.config) |
|
cfg.val_dataloader.batch_size = 1 |
|
cfg.work_dir = tempfile.TemporaryDirectory().name |
|
|
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
init_default_scope(cfg.get('default_scope', 'mmdet')) |
|
|
|
|
|
|
|
|
|
|
|
if hasattr(cfg, 'head_norm_cfg'): |
|
cfg['head_norm_cfg'] = dict(type='SyncBN', requires_grad=True) |
|
cfg['model']['roi_head']['bbox_head']['norm_cfg'] = dict( |
|
type='SyncBN', requires_grad=True) |
|
cfg['model']['roi_head']['mask_head']['norm_cfg'] = dict( |
|
type='SyncBN', requires_grad=True) |
|
|
|
result = {} |
|
avg_flops = [] |
|
data_loader = Runner.build_dataloader(cfg.val_dataloader) |
|
model = MODELS.build(cfg.model) |
|
if torch.cuda.is_available(): |
|
model = model.cuda() |
|
model = revert_sync_batchnorm(model) |
|
model.eval() |
|
_forward = model.forward |
|
|
|
for idx, data_batch in enumerate(data_loader): |
|
if idx == args.num_images: |
|
break |
|
data = model.data_preprocessor(data_batch) |
|
result['ori_shape'] = data['data_samples'][0].ori_shape |
|
result['pad_shape'] = data['data_samples'][0].pad_shape |
|
if hasattr(data['data_samples'][0], 'batch_input_shape'): |
|
result['pad_shape'] = data['data_samples'][0].batch_input_shape |
|
model.forward = partial(_forward, data_samples=data['data_samples']) |
|
outputs = get_model_complexity_info( |
|
model, |
|
None, |
|
inputs=data['inputs'], |
|
show_table=False, |
|
show_arch=False) |
|
avg_flops.append(outputs['flops']) |
|
params = outputs['params'] |
|
result['compute_type'] = 'dataloader: load a picture from the dataset' |
|
del data_loader |
|
|
|
mean_flops = _format_size(int(np.average(avg_flops))) |
|
params = _format_size(params) |
|
result['flops'] = mean_flops |
|
result['params'] = params |
|
|
|
return result |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
logger = MMLogger.get_instance(name='MMLogger') |
|
result = inference(args, logger) |
|
split_line = '=' * 30 |
|
ori_shape = result['ori_shape'] |
|
pad_shape = result['pad_shape'] |
|
flops = result['flops'] |
|
params = result['params'] |
|
compute_type = result['compute_type'] |
|
|
|
if pad_shape != ori_shape: |
|
print(f'{split_line}\nUse size divisor set input shape ' |
|
f'from {ori_shape} to {pad_shape}') |
|
print(f'{split_line}\nCompute type: {compute_type}\n' |
|
f'Input shape: {pad_shape}\nFlops: {flops}\n' |
|
f'Params: {params}\n{split_line}') |
|
print('!!!Please be cautious if you use the results in papers. ' |
|
'You may need to check if all ops are supported and verify ' |
|
'that the flops computation is correct.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|