scfive
commited on
Commit
·
e8f2571
1
Parent(s):
0eabbc1
Resolve README.md conflict and continue rebase
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .idea/.gitignore +3 -0
- .idea/SpecDETR.iml +18 -0
- .idea/inspectionProfiles/Project_Default.xml +42 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- MANIFEST.in +6 -0
- benchmark.py +133 -0
- configs/_base_/datasets/cityscapes_detection.py +84 -0
- configs/_base_/datasets/cityscapes_instance.py +113 -0
- configs/_base_/datasets/coco_detection.py +95 -0
- configs/_base_/datasets/coco_instance.py +95 -0
- configs/_base_/datasets/coco_instance_semantic.py +78 -0
- configs/_base_/datasets/coco_panoptic.py +94 -0
- configs/_base_/datasets/deepfashion.py +95 -0
- configs/_base_/datasets/hsi_detection.py +96 -0
- configs/_base_/datasets/objects365v1_detection.py +74 -0
- configs/_base_/datasets/objects365v2_detection.py +73 -0
- configs/_base_/datasets/openimages_detection.py +81 -0
- configs/_base_/datasets/semi_coco_detection.py +178 -0
- configs/_base_/datasets/voc0712.py +92 -0
- configs/_base_/datasets/wider_face.py +73 -0
- configs/_base_/default_runtime.py +25 -0
- configs/_base_/models/cascade-mask-rcnn_r50_fpn.py +203 -0
- configs/_base_/models/cascade-rcnn_r50_fpn.py +185 -0
- configs/_base_/models/fast-rcnn_r50_fpn.py +68 -0
- configs/_base_/models/faster-rcnn_r50-caffe-c4.py +123 -0
- configs/_base_/models/faster-rcnn_r50-caffe-dc5.py +111 -0
- configs/_base_/models/faster-rcnn_r50_fpn.py +114 -0
- configs/_base_/models/mask-rcnn_r50-caffe-c4.py +132 -0
- configs/_base_/models/mask-rcnn_r50_fpn.py +127 -0
- configs/_base_/models/retinanet_r50_fpn.py +68 -0
- configs/_base_/models/rpn_r50-caffe-c4.py +64 -0
- configs/_base_/models/rpn_r50_fpn.py +64 -0
- configs/_base_/models/ssd300.py +63 -0
- configs/_base_/schedules/schedule_1x.py +28 -0
- configs/_base_/schedules/schedule_20e.py +28 -0
- configs/_base_/schedules/schedule_2x.py +28 -0
- configs/backup/albu_example/README.md +31 -0
- configs/backup/albu_example/mask-rcnn_r50_fpn_albu-1x_coco.py +66 -0
- configs/backup/albu_example/metafile.yml +17 -0
- configs/backup/atss/README.md +31 -0
- configs/backup/atss/atss_r101_fpn_1x_coco.py +6 -0
- configs/backup/atss/atss_r101_fpn_8xb8-amp-lsj-200e_coco.py +7 -0
- configs/backup/atss/atss_r18_fpn_8xb8-amp-lsj-200e_coco.py +7 -0
- configs/backup/atss/atss_r50_fpn_1x_coco.py +71 -0
- configs/backup/atss/atss_r50_fpn_8xb8-amp-lsj-200e_coco.py +81 -0
- configs/backup/atss/metafile.yml +60 -0
- configs/backup/autoassign/README.md +35 -0
- configs/backup/autoassign/autoassign_r50-caffe_fpn_1x_coco.py +69 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# 默认忽略的文件
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
.idea/SpecDETR.iml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="mmcv2" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PackageRequirementsSettings">
|
9 |
+
<option name="requirementsPath" value="" />
|
10 |
+
</component>
|
11 |
+
<component name="PyDocumentationSettings">
|
12 |
+
<option name="format" value="GOOGLE" />
|
13 |
+
<option name="myDocStringFormat" value="Google" />
|
14 |
+
</component>
|
15 |
+
<component name="TestRunnerService">
|
16 |
+
<option name="PROJECT_TEST_RUNNER" value="Unittests" />
|
17 |
+
</component>
|
18 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="22">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="imagecorruptions" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="interrogate" />
|
10 |
+
<item index="2" class="java.lang.String" itemvalue="mmtrack" />
|
11 |
+
<item index="3" class="java.lang.String" itemvalue="isort" />
|
12 |
+
<item index="4" class="java.lang.String" itemvalue="kwarray" />
|
13 |
+
<item index="5" class="java.lang.String" itemvalue="asynctest" />
|
14 |
+
<item index="6" class="java.lang.String" itemvalue="onnx" />
|
15 |
+
<item index="7" class="java.lang.String" itemvalue="xdoctest" />
|
16 |
+
<item index="8" class="java.lang.String" itemvalue="codecov" />
|
17 |
+
<item index="9" class="java.lang.String" itemvalue="flake8" />
|
18 |
+
<item index="10" class="java.lang.String" itemvalue="ubelt" />
|
19 |
+
<item index="11" class="java.lang.String" itemvalue="fairscale" />
|
20 |
+
<item index="12" class="java.lang.String" itemvalue="pytest" />
|
21 |
+
<item index="13" class="java.lang.String" itemvalue="emoji" />
|
22 |
+
<item index="14" class="java.lang.String" itemvalue="lightning" />
|
23 |
+
<item index="15" class="java.lang.String" itemvalue="hydra-core" />
|
24 |
+
<item index="16" class="java.lang.String" itemvalue="memory_profiler" />
|
25 |
+
<item index="17" class="java.lang.String" itemvalue="mmpose" />
|
26 |
+
<item index="18" class="java.lang.String" itemvalue="mmrazor" />
|
27 |
+
<item index="19" class="java.lang.String" itemvalue="parameterized" />
|
28 |
+
<item index="20" class="java.lang.String" itemvalue="mmcls" />
|
29 |
+
<item index="21" class="java.lang.String" itemvalue="mmrotate" />
|
30 |
+
</list>
|
31 |
+
</value>
|
32 |
+
</option>
|
33 |
+
</inspection_tool>
|
34 |
+
<inspection_tool class="PyUnresolvedReferencesInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
35 |
+
<option name="ignoredIdentifiers">
|
36 |
+
<list>
|
37 |
+
<option value="pkl2json._" />
|
38 |
+
</list>
|
39 |
+
</option>
|
40 |
+
</inspection_tool>
|
41 |
+
</profile>
|
42 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="mmcv2" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/SpecDETR.iml" filepath="$PROJECT_DIR$/.idea/SpecDETR.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
MANIFEST.in
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
include requirements/*.txt
|
2 |
+
include mmdet/VERSION
|
3 |
+
include mmdet/.mim/model-index.yml
|
4 |
+
include mmdet/.mim/demo/*/*
|
5 |
+
recursive-include mmdet/.mim/configs *.py *.yml
|
6 |
+
recursive-include mmdet/.mim/tools *.sh *.py
|
benchmark.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
5 |
+
from mmengine import MMLogger
|
6 |
+
from mmengine.config import Config, DictAction
|
7 |
+
from mmengine.dist import init_dist
|
8 |
+
from mmengine.registry import init_default_scope
|
9 |
+
from mmengine.utils import mkdir_or_exist
|
10 |
+
|
11 |
+
from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark,
|
12 |
+
InferenceBenchmark)
|
13 |
+
|
14 |
+
|
15 |
+
def parse_args():
|
16 |
+
parser = argparse.ArgumentParser(description='MMDet benchmark')
|
17 |
+
parser.add_argument('--config',default='./configs/specdetr_sb-2s-100e_hsi.py',help='test config file path')
|
18 |
+
parser.add_argument('--checkpoint',default='./work_dirs/SpecDETR/SpecDETR_100e.pth', help='checkpoint file')
|
19 |
+
parser.add_argument(
|
20 |
+
'--task',
|
21 |
+
choices=['inference', 'dataloader', 'dataset'],
|
22 |
+
default='inference',
|
23 |
+
help='Which task do you want to go to benchmark')
|
24 |
+
parser.add_argument(
|
25 |
+
'--repeat-num',
|
26 |
+
type=int,
|
27 |
+
default=1,
|
28 |
+
help='number of repeat times of measurement for averaging the results')
|
29 |
+
parser.add_argument(
|
30 |
+
'--max-iter', type=int, default=2000, help='num of max iter')
|
31 |
+
parser.add_argument(
|
32 |
+
'--log-interval', type=int, default=50, help='interval of logging')
|
33 |
+
parser.add_argument(
|
34 |
+
'--num-warmup', type=int, default=5, help='Number of warmup')
|
35 |
+
parser.add_argument(
|
36 |
+
'--fuse-conv-bn',
|
37 |
+
action='store_true',
|
38 |
+
help='Whether to fuse conv and bn, this will slightly increase'
|
39 |
+
'the inference speed')
|
40 |
+
parser.add_argument(
|
41 |
+
'--dataset-type',
|
42 |
+
choices=['train', 'val', 'test'],
|
43 |
+
default='test',
|
44 |
+
help='Benchmark dataset type. only supports train, val and test')
|
45 |
+
parser.add_argument(
|
46 |
+
'--work-dir',
|
47 |
+
help='the directory to save the file containing '
|
48 |
+
'benchmark metrics')
|
49 |
+
parser.add_argument(
|
50 |
+
'--cfg-options',
|
51 |
+
nargs='+',
|
52 |
+
action=DictAction,
|
53 |
+
help='override some settings in the used config, the key-value pair '
|
54 |
+
'in xxx=yyy format will be merged into config file. If the value to '
|
55 |
+
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
56 |
+
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
57 |
+
'Note that the quotation marks are necessary and that no white space '
|
58 |
+
'is allowed.')
|
59 |
+
parser.add_argument(
|
60 |
+
'--launcher',
|
61 |
+
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
62 |
+
default='none',
|
63 |
+
help='job launcher')
|
64 |
+
parser.add_argument('--local_rank', type=int, default=0)
|
65 |
+
args = parser.parse_args()
|
66 |
+
if 'LOCAL_RANK' not in os.environ:
|
67 |
+
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
68 |
+
return args
|
69 |
+
|
70 |
+
|
71 |
+
def inference_benchmark(args, cfg, distributed, logger):
|
72 |
+
benchmark = InferenceBenchmark(
|
73 |
+
cfg,
|
74 |
+
args.checkpoint,
|
75 |
+
distributed,
|
76 |
+
args.fuse_conv_bn,
|
77 |
+
args.max_iter,
|
78 |
+
args.log_interval,
|
79 |
+
args.num_warmup,
|
80 |
+
logger=logger)
|
81 |
+
return benchmark
|
82 |
+
|
83 |
+
|
84 |
+
def dataloader_benchmark(args, cfg, distributed, logger):
|
85 |
+
benchmark = DataLoaderBenchmark(
|
86 |
+
cfg,
|
87 |
+
distributed,
|
88 |
+
args.dataset_type,
|
89 |
+
args.max_iter,
|
90 |
+
args.log_interval,
|
91 |
+
args.num_warmup,
|
92 |
+
logger=logger)
|
93 |
+
return benchmark
|
94 |
+
|
95 |
+
|
96 |
+
def dataset_benchmark(args, cfg, distributed, logger):
|
97 |
+
benchmark = DatasetBenchmark(
|
98 |
+
cfg,
|
99 |
+
args.dataset_type,
|
100 |
+
args.max_iter,
|
101 |
+
args.log_interval,
|
102 |
+
args.num_warmup,
|
103 |
+
logger=logger)
|
104 |
+
return benchmark
|
105 |
+
|
106 |
+
|
107 |
+
def main():
|
108 |
+
args = parse_args()
|
109 |
+
cfg = Config.fromfile(args.config)
|
110 |
+
if args.cfg_options is not None:
|
111 |
+
cfg.merge_from_dict(args.cfg_options)
|
112 |
+
|
113 |
+
init_default_scope(cfg.get('default_scope', 'mmdet'))
|
114 |
+
|
115 |
+
distributed = False
|
116 |
+
if args.launcher != 'none':
|
117 |
+
init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {}))
|
118 |
+
distributed = True
|
119 |
+
|
120 |
+
log_file = None
|
121 |
+
if args.work_dir:
|
122 |
+
log_file = os.path.join(args.work_dir, 'benchmark.log')
|
123 |
+
mkdir_or_exist(args.work_dir)
|
124 |
+
|
125 |
+
logger = MMLogger.get_instance(
|
126 |
+
'mmdet', log_file=log_file, log_level='INFO')
|
127 |
+
|
128 |
+
benchmark = eval(f'{args.task}_benchmark')(args, cfg, distributed, logger)
|
129 |
+
benchmark.run(args.repeat_num)
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == '__main__':
|
133 |
+
main()
|
configs/_base_/datasets/cityscapes_detection.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CityscapesDataset'
|
3 |
+
data_root = 'data/cityscapes/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/segmentation/cityscapes/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/segmentation/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/segmentation/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
23 |
+
dict(
|
24 |
+
type='RandomResize',
|
25 |
+
scale=[(2048, 800), (2048, 1024)],
|
26 |
+
keep_ratio=True),
|
27 |
+
dict(type='RandomFlip', prob=0.5),
|
28 |
+
dict(type='PackDetInputs')
|
29 |
+
]
|
30 |
+
|
31 |
+
test_pipeline = [
|
32 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
33 |
+
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
|
34 |
+
# If you don't have a gt annotation, delete the pipeline
|
35 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
36 |
+
dict(
|
37 |
+
type='PackDetInputs',
|
38 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
39 |
+
'scale_factor'))
|
40 |
+
]
|
41 |
+
|
42 |
+
train_dataloader = dict(
|
43 |
+
batch_size=1,
|
44 |
+
num_workers=2,
|
45 |
+
persistent_workers=True,
|
46 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
47 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
48 |
+
dataset=dict(
|
49 |
+
type='RepeatDataset',
|
50 |
+
times=8,
|
51 |
+
dataset=dict(
|
52 |
+
type=dataset_type,
|
53 |
+
data_root=data_root,
|
54 |
+
ann_file='annotations/instancesonly_filtered_gtFine_train.json',
|
55 |
+
data_prefix=dict(img='leftImg8bit/train/'),
|
56 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
57 |
+
pipeline=train_pipeline,
|
58 |
+
backend_args=backend_args)))
|
59 |
+
|
60 |
+
val_dataloader = dict(
|
61 |
+
batch_size=1,
|
62 |
+
num_workers=2,
|
63 |
+
persistent_workers=True,
|
64 |
+
drop_last=False,
|
65 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
66 |
+
dataset=dict(
|
67 |
+
type=dataset_type,
|
68 |
+
data_root=data_root,
|
69 |
+
ann_file='annotations/instancesonly_filtered_gtFine_val.json',
|
70 |
+
data_prefix=dict(img='leftImg8bit/val/'),
|
71 |
+
test_mode=True,
|
72 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
73 |
+
pipeline=test_pipeline,
|
74 |
+
backend_args=backend_args))
|
75 |
+
|
76 |
+
test_dataloader = val_dataloader
|
77 |
+
|
78 |
+
val_evaluator = dict(
|
79 |
+
type='CocoMetric',
|
80 |
+
ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json',
|
81 |
+
metric='bbox',
|
82 |
+
backend_args=backend_args)
|
83 |
+
|
84 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/cityscapes_instance.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CityscapesDataset'
|
3 |
+
data_root = 'data/cityscapes/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/segmentation/cityscapes/'
|
10 |
+
|
11 |
+
# Method 2: Use backend_args, file_client_args in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/segmentation/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/segmentation/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
23 |
+
dict(
|
24 |
+
type='RandomResize',
|
25 |
+
scale=[(2048, 800), (2048, 1024)],
|
26 |
+
keep_ratio=True),
|
27 |
+
dict(type='RandomFlip', prob=0.5),
|
28 |
+
dict(type='PackDetInputs')
|
29 |
+
]
|
30 |
+
|
31 |
+
test_pipeline = [
|
32 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
33 |
+
dict(type='Resize', scale=(2048, 1024), keep_ratio=True),
|
34 |
+
# If you don't have a gt annotation, delete the pipeline
|
35 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
36 |
+
dict(
|
37 |
+
type='PackDetInputs',
|
38 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
39 |
+
'scale_factor'))
|
40 |
+
]
|
41 |
+
|
42 |
+
train_dataloader = dict(
|
43 |
+
batch_size=1,
|
44 |
+
num_workers=2,
|
45 |
+
persistent_workers=True,
|
46 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
47 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
48 |
+
dataset=dict(
|
49 |
+
type='RepeatDataset',
|
50 |
+
times=8,
|
51 |
+
dataset=dict(
|
52 |
+
type=dataset_type,
|
53 |
+
data_root=data_root,
|
54 |
+
ann_file='annotations/instancesonly_filtered_gtFine_train.json',
|
55 |
+
data_prefix=dict(img='leftImg8bit/train/'),
|
56 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
57 |
+
pipeline=train_pipeline,
|
58 |
+
backend_args=backend_args)))
|
59 |
+
|
60 |
+
val_dataloader = dict(
|
61 |
+
batch_size=1,
|
62 |
+
num_workers=2,
|
63 |
+
persistent_workers=True,
|
64 |
+
drop_last=False,
|
65 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
66 |
+
dataset=dict(
|
67 |
+
type=dataset_type,
|
68 |
+
data_root=data_root,
|
69 |
+
ann_file='annotations/instancesonly_filtered_gtFine_val.json',
|
70 |
+
data_prefix=dict(img='leftImg8bit/val/'),
|
71 |
+
test_mode=True,
|
72 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
73 |
+
pipeline=test_pipeline,
|
74 |
+
backend_args=backend_args))
|
75 |
+
|
76 |
+
test_dataloader = val_dataloader
|
77 |
+
|
78 |
+
val_evaluator = [
|
79 |
+
dict(
|
80 |
+
type='CocoMetric',
|
81 |
+
ann_file=data_root +
|
82 |
+
'annotations/instancesonly_filtered_gtFine_val.json',
|
83 |
+
metric=['bbox', 'segm'],
|
84 |
+
backend_args=backend_args),
|
85 |
+
dict(
|
86 |
+
type='CityScapesMetric',
|
87 |
+
seg_prefix=data_root + 'gtFine/val',
|
88 |
+
outfile_prefix='./work_dirs/cityscapes_metric/instance',
|
89 |
+
backend_args=backend_args)
|
90 |
+
]
|
91 |
+
|
92 |
+
test_evaluator = val_evaluator
|
93 |
+
|
94 |
+
# inference on test dataset and
|
95 |
+
# format the output results for submission.
|
96 |
+
# test_dataloader = dict(
|
97 |
+
# batch_size=1,
|
98 |
+
# num_workers=2,
|
99 |
+
# persistent_workers=True,
|
100 |
+
# drop_last=False,
|
101 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
102 |
+
# dataset=dict(
|
103 |
+
# type=dataset_type,
|
104 |
+
# data_root=data_root,
|
105 |
+
# ann_file='annotations/instancesonly_filtered_gtFine_test.json',
|
106 |
+
# data_prefix=dict(img='leftImg8bit/test/'),
|
107 |
+
# test_mode=True,
|
108 |
+
# filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
109 |
+
# pipeline=test_pipeline))
|
110 |
+
# test_evaluator = dict(
|
111 |
+
# type='CityScapesMetric',
|
112 |
+
# format_only=True,
|
113 |
+
# outfile_prefix='./work_dirs/cityscapes_metric/test')
|
configs/_base_/datasets/coco_detection.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
23 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
30 |
+
# If you don't have a gt annotation, delete the pipeline
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
32 |
+
dict(
|
33 |
+
type='PackDetInputs',
|
34 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
35 |
+
'scale_factor'))
|
36 |
+
]
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=2,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/instances_train2017.json',
|
47 |
+
data_prefix=dict(img='train2017/'),
|
48 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
49 |
+
pipeline=train_pipeline,
|
50 |
+
backend_args=backend_args))
|
51 |
+
val_dataloader = dict(
|
52 |
+
batch_size=1,
|
53 |
+
num_workers=2,
|
54 |
+
persistent_workers=True,
|
55 |
+
drop_last=False,
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
dataset=dict(
|
58 |
+
type=dataset_type,
|
59 |
+
data_root=data_root,
|
60 |
+
ann_file='annotations/instances_val2017.json',
|
61 |
+
data_prefix=dict(img='val2017/'),
|
62 |
+
test_mode=True,
|
63 |
+
pipeline=test_pipeline,
|
64 |
+
backend_args=backend_args))
|
65 |
+
test_dataloader = val_dataloader
|
66 |
+
|
67 |
+
val_evaluator = dict(
|
68 |
+
type='CocoMetric',
|
69 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
70 |
+
metric='bbox',
|
71 |
+
format_only=False,
|
72 |
+
backend_args=backend_args)
|
73 |
+
test_evaluator = val_evaluator
|
74 |
+
|
75 |
+
# inference on test dataset and
|
76 |
+
# format the output results for submission.
|
77 |
+
# test_dataloader = dict(
|
78 |
+
# batch_size=1,
|
79 |
+
# num_workers=2,
|
80 |
+
# persistent_workers=True,
|
81 |
+
# drop_last=False,
|
82 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
83 |
+
# dataset=dict(
|
84 |
+
# type=dataset_type,
|
85 |
+
# data_root=data_root,
|
86 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
87 |
+
# data_prefix=dict(img='test2017/'),
|
88 |
+
# test_mode=True,
|
89 |
+
# pipeline=test_pipeline))
|
90 |
+
# test_evaluator = dict(
|
91 |
+
# type='CocoMetric',
|
92 |
+
# metric='bbox',
|
93 |
+
# format_only=True,
|
94 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
95 |
+
# outfile_prefix='./work_dirs/coco_detection/test')
|
configs/_base_/datasets/coco_instance.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
23 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
30 |
+
# If you don't have a gt annotation, delete the pipeline
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
32 |
+
dict(
|
33 |
+
type='PackDetInputs',
|
34 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
35 |
+
'scale_factor'))
|
36 |
+
]
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=2,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/instances_train2017.json',
|
47 |
+
data_prefix=dict(img='train2017/'),
|
48 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
49 |
+
pipeline=train_pipeline,
|
50 |
+
backend_args=backend_args))
|
51 |
+
val_dataloader = dict(
|
52 |
+
batch_size=1,
|
53 |
+
num_workers=2,
|
54 |
+
persistent_workers=True,
|
55 |
+
drop_last=False,
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
dataset=dict(
|
58 |
+
type=dataset_type,
|
59 |
+
data_root=data_root,
|
60 |
+
ann_file='annotations/instances_val2017.json',
|
61 |
+
data_prefix=dict(img='val2017/'),
|
62 |
+
test_mode=True,
|
63 |
+
pipeline=test_pipeline,
|
64 |
+
backend_args=backend_args))
|
65 |
+
test_dataloader = val_dataloader
|
66 |
+
|
67 |
+
val_evaluator = dict(
|
68 |
+
type='CocoMetric',
|
69 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
70 |
+
metric=['bbox', 'segm'],
|
71 |
+
format_only=False,
|
72 |
+
backend_args=backend_args)
|
73 |
+
test_evaluator = val_evaluator
|
74 |
+
|
75 |
+
# inference on test dataset and
|
76 |
+
# format the output results for submission.
|
77 |
+
# test_dataloader = dict(
|
78 |
+
# batch_size=1,
|
79 |
+
# num_workers=2,
|
80 |
+
# persistent_workers=True,
|
81 |
+
# drop_last=False,
|
82 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
83 |
+
# dataset=dict(
|
84 |
+
# type=dataset_type,
|
85 |
+
# data_root=data_root,
|
86 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
87 |
+
# data_prefix=dict(img='test2017/'),
|
88 |
+
# test_mode=True,
|
89 |
+
# pipeline=test_pipeline))
|
90 |
+
# test_evaluator = dict(
|
91 |
+
# type='CocoMetric',
|
92 |
+
# metric=['bbox', 'segm'],
|
93 |
+
# format_only=True,
|
94 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
95 |
+
# outfile_prefix='./work_dirs/coco_instance/test')
|
configs/_base_/datasets/coco_instance_semantic.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(
|
23 |
+
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
|
24 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
25 |
+
dict(type='RandomFlip', prob=0.5),
|
26 |
+
dict(type='PackDetInputs')
|
27 |
+
]
|
28 |
+
test_pipeline = [
|
29 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
30 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
31 |
+
# If you don't have a gt annotation, delete the pipeline
|
32 |
+
dict(
|
33 |
+
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
|
34 |
+
dict(
|
35 |
+
type='PackDetInputs',
|
36 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
37 |
+
'scale_factor'))
|
38 |
+
]
|
39 |
+
|
40 |
+
train_dataloader = dict(
|
41 |
+
batch_size=2,
|
42 |
+
num_workers=2,
|
43 |
+
persistent_workers=True,
|
44 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
45 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
46 |
+
dataset=dict(
|
47 |
+
type=dataset_type,
|
48 |
+
data_root=data_root,
|
49 |
+
ann_file='annotations/instances_train2017.json',
|
50 |
+
data_prefix=dict(img='train2017/', seg='stuffthingmaps/train2017/'),
|
51 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
52 |
+
pipeline=train_pipeline,
|
53 |
+
backend_args=backend_args))
|
54 |
+
|
55 |
+
val_dataloader = dict(
|
56 |
+
batch_size=1,
|
57 |
+
num_workers=2,
|
58 |
+
persistent_workers=True,
|
59 |
+
drop_last=False,
|
60 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
61 |
+
dataset=dict(
|
62 |
+
type=dataset_type,
|
63 |
+
data_root=data_root,
|
64 |
+
ann_file='annotations/instances_val2017.json',
|
65 |
+
data_prefix=dict(img='val2017/'),
|
66 |
+
test_mode=True,
|
67 |
+
pipeline=test_pipeline,
|
68 |
+
backend_args=backend_args))
|
69 |
+
|
70 |
+
test_dataloader = val_dataloader
|
71 |
+
|
72 |
+
val_evaluator = dict(
|
73 |
+
type='CocoMetric',
|
74 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
75 |
+
metric=['bbox', 'segm'],
|
76 |
+
format_only=False,
|
77 |
+
backend_args=backend_args)
|
78 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/coco_panoptic.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoPanopticDataset'
|
3 |
+
# data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadPanopticAnnotations', backend_args=backend_args),
|
23 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
30 |
+
dict(type='LoadPanopticAnnotations', backend_args=backend_args),
|
31 |
+
dict(
|
32 |
+
type='PackDetInputs',
|
33 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
34 |
+
'scale_factor'))
|
35 |
+
]
|
36 |
+
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=2,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/panoptic_train2017.json',
|
47 |
+
data_prefix=dict(
|
48 |
+
img='train2017/', seg='annotations/panoptic_train2017/'),
|
49 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
50 |
+
pipeline=train_pipeline,
|
51 |
+
backend_args=backend_args))
|
52 |
+
val_dataloader = dict(
|
53 |
+
batch_size=1,
|
54 |
+
num_workers=2,
|
55 |
+
persistent_workers=True,
|
56 |
+
drop_last=False,
|
57 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
58 |
+
dataset=dict(
|
59 |
+
type=dataset_type,
|
60 |
+
data_root=data_root,
|
61 |
+
ann_file='annotations/panoptic_val2017.json',
|
62 |
+
data_prefix=dict(img='val2017/', seg='annotations/panoptic_val2017/'),
|
63 |
+
test_mode=True,
|
64 |
+
pipeline=test_pipeline,
|
65 |
+
backend_args=backend_args))
|
66 |
+
test_dataloader = val_dataloader
|
67 |
+
|
68 |
+
val_evaluator = dict(
|
69 |
+
type='CocoPanopticMetric',
|
70 |
+
ann_file=data_root + 'annotations/panoptic_val2017.json',
|
71 |
+
seg_prefix=data_root + 'annotations/panoptic_val2017/',
|
72 |
+
backend_args=backend_args)
|
73 |
+
test_evaluator = val_evaluator
|
74 |
+
|
75 |
+
# inference on test dataset and
|
76 |
+
# format the output results for submission.
|
77 |
+
# test_dataloader = dict(
|
78 |
+
# batch_size=1,
|
79 |
+
# num_workers=1,
|
80 |
+
# persistent_workers=True,
|
81 |
+
# drop_last=False,
|
82 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
83 |
+
# dataset=dict(
|
84 |
+
# type=dataset_type,
|
85 |
+
# data_root=data_root,
|
86 |
+
# ann_file='annotations/panoptic_image_info_test-dev2017.json',
|
87 |
+
# data_prefix=dict(img='test2017/'),
|
88 |
+
# test_mode=True,
|
89 |
+
# pipeline=test_pipeline))
|
90 |
+
# test_evaluator = dict(
|
91 |
+
# type='CocoPanopticMetric',
|
92 |
+
# format_only=True,
|
93 |
+
# ann_file=data_root + 'annotations/panoptic_image_info_test-dev2017.json',
|
94 |
+
# outfile_prefix='./work_dirs/coco_panoptic/test')
|
configs/_base_/datasets/deepfashion.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'DeepFashionDataset'
|
3 |
+
data_root = 'data/DeepFashion/In-shop/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
23 |
+
dict(type='Resize', scale=(750, 1101), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(750, 1101), keep_ratio=True),
|
30 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
31 |
+
dict(
|
32 |
+
type='PackDetInputs',
|
33 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
34 |
+
'scale_factor'))
|
35 |
+
]
|
36 |
+
train_dataloader = dict(
|
37 |
+
batch_size=2,
|
38 |
+
num_workers=2,
|
39 |
+
persistent_workers=True,
|
40 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
41 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
42 |
+
dataset=dict(
|
43 |
+
type='RepeatDataset',
|
44 |
+
times=2,
|
45 |
+
dataset=dict(
|
46 |
+
type=dataset_type,
|
47 |
+
data_root=data_root,
|
48 |
+
ann_file='Anno/segmentation/DeepFashion_segmentation_train.json',
|
49 |
+
data_prefix=dict(img='Img/'),
|
50 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
51 |
+
pipeline=train_pipeline,
|
52 |
+
backend_args=backend_args)))
|
53 |
+
val_dataloader = dict(
|
54 |
+
batch_size=1,
|
55 |
+
num_workers=2,
|
56 |
+
persistent_workers=True,
|
57 |
+
drop_last=False,
|
58 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
59 |
+
dataset=dict(
|
60 |
+
type=dataset_type,
|
61 |
+
data_root=data_root,
|
62 |
+
ann_file='Anno/segmentation/DeepFashion_segmentation_query.json',
|
63 |
+
data_prefix=dict(img='Img/'),
|
64 |
+
test_mode=True,
|
65 |
+
pipeline=test_pipeline,
|
66 |
+
backend_args=backend_args))
|
67 |
+
test_dataloader = dict(
|
68 |
+
batch_size=1,
|
69 |
+
num_workers=2,
|
70 |
+
persistent_workers=True,
|
71 |
+
drop_last=False,
|
72 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
73 |
+
dataset=dict(
|
74 |
+
type=dataset_type,
|
75 |
+
data_root=data_root,
|
76 |
+
ann_file='Anno/segmentation/DeepFashion_segmentation_gallery.json',
|
77 |
+
data_prefix=dict(img='Img/'),
|
78 |
+
test_mode=True,
|
79 |
+
pipeline=test_pipeline,
|
80 |
+
backend_args=backend_args))
|
81 |
+
|
82 |
+
val_evaluator = dict(
|
83 |
+
type='CocoMetric',
|
84 |
+
ann_file=data_root +
|
85 |
+
'Anno/segmentation/DeepFashion_segmentation_query.json',
|
86 |
+
metric=['bbox', 'segm'],
|
87 |
+
format_only=False,
|
88 |
+
backend_args=backend_args)
|
89 |
+
test_evaluator = dict(
|
90 |
+
type='CocoMetric',
|
91 |
+
ann_file=data_root +
|
92 |
+
'Anno/segmentation/DeepFashion_segmentation_gallery.json',
|
93 |
+
metric=['bbox', 'segm'],
|
94 |
+
format_only=False,
|
95 |
+
backend_args=backend_args)
|
configs/_base_/datasets/hsi_detection.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'HSIDataset'
|
3 |
+
data_root = '/media/ubuntu/data/HTD_dataset/SPOD_30b_8c/'
|
4 |
+
# Example to use different file client
|
5 |
+
# Method 1: simply set the data root and let the file I/O module
|
6 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
7 |
+
|
8 |
+
|
9 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
10 |
+
# backend_args = dict(
|
11 |
+
# backend='petrel',
|
12 |
+
# path_mapping=dict({
|
13 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
14 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
15 |
+
# }))
|
16 |
+
|
17 |
+
normalized_basis =3000
|
18 |
+
backend_args = None
|
19 |
+
train_pipeline = [
|
20 |
+
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=normalized_basis),
|
21 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
22 |
+
# dict(type='Resize', scale=(512, 512), keep_ratio=True),
|
23 |
+
dict(type='HSIResize', scale_factor=1, keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs',meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', 'flip_direction','scale_factor'))
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadHyperspectralImageFromFiles', to_float32 =True, normalized_basis=normalized_basis),
|
29 |
+
# dict(type='Resize', scale=(512, 512), keep_ratio=True),
|
30 |
+
dict(type='HSIResize', scale_factor=1, keep_ratio=True),
|
31 |
+
# If you don't have a gt annotation, delete the pipeline
|
32 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
33 |
+
dict(
|
34 |
+
type='PackDetInputs',
|
35 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
36 |
+
]
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=4,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/train.json',
|
47 |
+
data_prefix=dict(img='train/'),
|
48 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
49 |
+
pipeline=train_pipeline,
|
50 |
+
backend_args=backend_args))
|
51 |
+
val_dataloader = dict(
|
52 |
+
batch_size=1,
|
53 |
+
num_workers=2,
|
54 |
+
persistent_workers=True,
|
55 |
+
drop_last=False,
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
dataset=dict(
|
58 |
+
type=dataset_type,
|
59 |
+
data_root=data_root,
|
60 |
+
ann_file='annotations/test.json',
|
61 |
+
data_prefix=dict(img='test/'),
|
62 |
+
test_mode=True,
|
63 |
+
pipeline=test_pipeline,
|
64 |
+
backend_args=backend_args))
|
65 |
+
test_dataloader = val_dataloader
|
66 |
+
|
67 |
+
val_evaluator = dict(
|
68 |
+
type='CocoMetric',
|
69 |
+
ann_file=data_root + 'annotations/test.json',
|
70 |
+
metric=['bbox','proposal_fast'],
|
71 |
+
classwise = True,
|
72 |
+
format_only=False,
|
73 |
+
backend_args=backend_args)
|
74 |
+
test_evaluator = val_evaluator
|
75 |
+
|
76 |
+
# inference on test dataset and
|
77 |
+
# format the output results for submission.
|
78 |
+
# test_dataloader = dict(
|
79 |
+
# batch_size=1,
|
80 |
+
# num_workers=2,
|
81 |
+
# persistent_workers=True,
|
82 |
+
# drop_last=False,
|
83 |
+
# sampler=dict(type='DefaultSampler', shuffle=False),
|
84 |
+
# dataset=dict(
|
85 |
+
# type=dataset_type,
|
86 |
+
# data_root=data_root,
|
87 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
88 |
+
# data_prefix=dict(img='test2017/'),
|
89 |
+
# test_mode=True,
|
90 |
+
# pipeline=test_pipeline))
|
91 |
+
# test_evaluator = dict(
|
92 |
+
# type='CocoMetric',
|
93 |
+
# metric='bbox',
|
94 |
+
# format_only=True,
|
95 |
+
# ann_file=data_root + 'annotations/image_info_test-dev2017.json',
|
96 |
+
# outfile_prefix='./work_dirs/coco_detection/test')
|
configs/_base_/datasets/objects365v1_detection.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'Objects365V1Dataset'
|
3 |
+
data_root = 'data/Objects365/Obj365_v1/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
23 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
30 |
+
# If you don't have a gt annotation, delete the pipeline
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
32 |
+
dict(
|
33 |
+
type='PackDetInputs',
|
34 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
35 |
+
'scale_factor'))
|
36 |
+
]
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=2,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/objects365_train.json',
|
47 |
+
data_prefix=dict(img='train/'),
|
48 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
49 |
+
pipeline=train_pipeline,
|
50 |
+
backend_args=backend_args))
|
51 |
+
val_dataloader = dict(
|
52 |
+
batch_size=1,
|
53 |
+
num_workers=2,
|
54 |
+
persistent_workers=True,
|
55 |
+
drop_last=False,
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
dataset=dict(
|
58 |
+
type=dataset_type,
|
59 |
+
data_root=data_root,
|
60 |
+
ann_file='annotations/objects365_val.json',
|
61 |
+
data_prefix=dict(img='val/'),
|
62 |
+
test_mode=True,
|
63 |
+
pipeline=test_pipeline,
|
64 |
+
backend_args=backend_args))
|
65 |
+
test_dataloader = val_dataloader
|
66 |
+
|
67 |
+
val_evaluator = dict(
|
68 |
+
type='CocoMetric',
|
69 |
+
ann_file=data_root + 'annotations/objects365_val.json',
|
70 |
+
metric='bbox',
|
71 |
+
sort_categories=True,
|
72 |
+
format_only=False,
|
73 |
+
backend_args=backend_args)
|
74 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/objects365v2_detection.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'Objects365V2Dataset'
|
3 |
+
data_root = 'data/Objects365/Obj365_v2/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
23 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
30 |
+
# If you don't have a gt annotation, delete the pipeline
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
32 |
+
dict(
|
33 |
+
type='PackDetInputs',
|
34 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
35 |
+
'scale_factor'))
|
36 |
+
]
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=2,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
ann_file='annotations/zhiyuan_objv2_train.json',
|
47 |
+
data_prefix=dict(img='train/'),
|
48 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
49 |
+
pipeline=train_pipeline,
|
50 |
+
backend_args=backend_args))
|
51 |
+
val_dataloader = dict(
|
52 |
+
batch_size=1,
|
53 |
+
num_workers=2,
|
54 |
+
persistent_workers=True,
|
55 |
+
drop_last=False,
|
56 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
57 |
+
dataset=dict(
|
58 |
+
type=dataset_type,
|
59 |
+
data_root=data_root,
|
60 |
+
ann_file='annotations/zhiyuan_objv2_val.json',
|
61 |
+
data_prefix=dict(img='val/'),
|
62 |
+
test_mode=True,
|
63 |
+
pipeline=test_pipeline,
|
64 |
+
backend_args=backend_args))
|
65 |
+
test_dataloader = val_dataloader
|
66 |
+
|
67 |
+
val_evaluator = dict(
|
68 |
+
type='CocoMetric',
|
69 |
+
ann_file=data_root + 'annotations/zhiyuan_objv2_val.json',
|
70 |
+
metric='bbox',
|
71 |
+
format_only=False,
|
72 |
+
backend_args=backend_args)
|
73 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/openimages_detection.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'OpenImagesDataset'
|
3 |
+
data_root = 'data/OpenImages/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
23 |
+
dict(type='Resize', scale=(1024, 800), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1024, 800), keep_ratio=True),
|
30 |
+
# avoid bboxes being resized
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
32 |
+
# TODO: find a better way to collect image_level_labels
|
33 |
+
dict(
|
34 |
+
type='PackDetInputs',
|
35 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
36 |
+
'scale_factor', 'instances', 'image_level_labels'))
|
37 |
+
]
|
38 |
+
|
39 |
+
train_dataloader = dict(
|
40 |
+
batch_size=2,
|
41 |
+
num_workers=0, # workers_per_gpu > 0 may occur out of memory
|
42 |
+
persistent_workers=False,
|
43 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
44 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
45 |
+
dataset=dict(
|
46 |
+
type=dataset_type,
|
47 |
+
data_root=data_root,
|
48 |
+
ann_file='annotations/oidv6-train-annotations-bbox.csv',
|
49 |
+
data_prefix=dict(img='OpenImages/train/'),
|
50 |
+
label_file='annotations/class-descriptions-boxable.csv',
|
51 |
+
hierarchy_file='annotations/bbox_labels_600_hierarchy.json',
|
52 |
+
meta_file='annotations/train-image-metas.pkl',
|
53 |
+
pipeline=train_pipeline,
|
54 |
+
backend_args=backend_args))
|
55 |
+
val_dataloader = dict(
|
56 |
+
batch_size=1,
|
57 |
+
num_workers=0,
|
58 |
+
persistent_workers=False,
|
59 |
+
drop_last=False,
|
60 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
61 |
+
dataset=dict(
|
62 |
+
type=dataset_type,
|
63 |
+
data_root=data_root,
|
64 |
+
ann_file='annotations/validation-annotations-bbox.csv',
|
65 |
+
data_prefix=dict(img='OpenImages/validation/'),
|
66 |
+
label_file='annotations/class-descriptions-boxable.csv',
|
67 |
+
hierarchy_file='annotations/bbox_labels_600_hierarchy.json',
|
68 |
+
meta_file='annotations/validation-image-metas.pkl',
|
69 |
+
image_level_ann_file='annotations/validation-'
|
70 |
+
'annotations-human-imagelabels-boxable.csv',
|
71 |
+
pipeline=test_pipeline,
|
72 |
+
backend_args=backend_args))
|
73 |
+
test_dataloader = val_dataloader
|
74 |
+
|
75 |
+
val_evaluator = dict(
|
76 |
+
type='OpenImagesMetric',
|
77 |
+
iou_thrs=0.5,
|
78 |
+
ioa_thrs=0.5,
|
79 |
+
use_group_of=True,
|
80 |
+
get_supercategory=True)
|
81 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/semi_coco_detection.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CocoDataset'
|
3 |
+
data_root = 'data/coco/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/coco/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
color_space = [
|
21 |
+
[dict(type='ColorTransform')],
|
22 |
+
[dict(type='AutoContrast')],
|
23 |
+
[dict(type='Equalize')],
|
24 |
+
[dict(type='Sharpness')],
|
25 |
+
[dict(type='Posterize')],
|
26 |
+
[dict(type='Solarize')],
|
27 |
+
[dict(type='Color')],
|
28 |
+
[dict(type='Contrast')],
|
29 |
+
[dict(type='Brightness')],
|
30 |
+
]
|
31 |
+
|
32 |
+
geometric = [
|
33 |
+
[dict(type='Rotate')],
|
34 |
+
[dict(type='ShearX')],
|
35 |
+
[dict(type='ShearY')],
|
36 |
+
[dict(type='TranslateX')],
|
37 |
+
[dict(type='TranslateY')],
|
38 |
+
]
|
39 |
+
|
40 |
+
scale = [(1333, 400), (1333, 1200)]
|
41 |
+
|
42 |
+
branch_field = ['sup', 'unsup_teacher', 'unsup_student']
|
43 |
+
# pipeline used to augment labeled data,
|
44 |
+
# which will be sent to student model for supervised training.
|
45 |
+
sup_pipeline = [
|
46 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
47 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
48 |
+
dict(type='RandomResize', scale=scale, keep_ratio=True),
|
49 |
+
dict(type='RandomFlip', prob=0.5),
|
50 |
+
dict(type='RandAugment', aug_space=color_space, aug_num=1),
|
51 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
|
52 |
+
dict(
|
53 |
+
type='MultiBranch',
|
54 |
+
branch_field=branch_field,
|
55 |
+
sup=dict(type='PackDetInputs'))
|
56 |
+
]
|
57 |
+
|
58 |
+
# pipeline used to augment unlabeled data weakly,
|
59 |
+
# which will be sent to teacher model for predicting pseudo instances.
|
60 |
+
weak_pipeline = [
|
61 |
+
dict(type='RandomResize', scale=scale, keep_ratio=True),
|
62 |
+
dict(type='RandomFlip', prob=0.5),
|
63 |
+
dict(
|
64 |
+
type='PackDetInputs',
|
65 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
66 |
+
'scale_factor', 'flip', 'flip_direction',
|
67 |
+
'homography_matrix')),
|
68 |
+
]
|
69 |
+
|
70 |
+
# pipeline used to augment unlabeled data strongly,
|
71 |
+
# which will be sent to student model for unsupervised training.
|
72 |
+
strong_pipeline = [
|
73 |
+
dict(type='RandomResize', scale=scale, keep_ratio=True),
|
74 |
+
dict(type='RandomFlip', prob=0.5),
|
75 |
+
dict(
|
76 |
+
type='RandomOrder',
|
77 |
+
transforms=[
|
78 |
+
dict(type='RandAugment', aug_space=color_space, aug_num=1),
|
79 |
+
dict(type='RandAugment', aug_space=geometric, aug_num=1),
|
80 |
+
]),
|
81 |
+
dict(type='RandomErasing', n_patches=(1, 5), ratio=(0, 0.2)),
|
82 |
+
dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
|
83 |
+
dict(
|
84 |
+
type='PackDetInputs',
|
85 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
86 |
+
'scale_factor', 'flip', 'flip_direction',
|
87 |
+
'homography_matrix')),
|
88 |
+
]
|
89 |
+
|
90 |
+
# pipeline used to augment unlabeled data into different views
|
91 |
+
unsup_pipeline = [
|
92 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
93 |
+
dict(type='LoadEmptyAnnotations'),
|
94 |
+
dict(
|
95 |
+
type='MultiBranch',
|
96 |
+
branch_field=branch_field,
|
97 |
+
unsup_teacher=weak_pipeline,
|
98 |
+
unsup_student=strong_pipeline,
|
99 |
+
)
|
100 |
+
]
|
101 |
+
|
102 |
+
test_pipeline = [
|
103 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
104 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
105 |
+
dict(
|
106 |
+
type='PackDetInputs',
|
107 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
108 |
+
'scale_factor'))
|
109 |
+
]
|
110 |
+
|
111 |
+
batch_size = 5
|
112 |
+
num_workers = 5
|
113 |
+
# There are two common semi-supervised learning settings on the coco dataset:
|
114 |
+
# (1) Divide the train2017 into labeled and unlabeled datasets
|
115 |
+
# by a fixed percentage, such as 1%, 2%, 5% and 10%.
|
116 |
+
# The format of labeled_ann_file and unlabeled_ann_file are
|
117 |
+
# instances_train2017.{fold}@{percent}.json, and
|
118 |
+
# instances_train2017.{fold}@{percent}-unlabeled.json
|
119 |
+
# `fold` is used for cross-validation, and `percent` represents
|
120 |
+
# the proportion of labeled data in the train2017.
|
121 |
+
# (2) Choose the train2017 as the labeled dataset
|
122 |
+
# and unlabeled2017 as the unlabeled dataset.
|
123 |
+
# The labeled_ann_file and unlabeled_ann_file are
|
124 |
+
# instances_train2017.json and image_info_unlabeled2017.json
|
125 |
+
# We use this configuration by default.
|
126 |
+
labeled_dataset = dict(
|
127 |
+
type=dataset_type,
|
128 |
+
data_root=data_root,
|
129 |
+
ann_file='annotations/instances_train2017.json',
|
130 |
+
data_prefix=dict(img='train2017/'),
|
131 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
132 |
+
pipeline=sup_pipeline,
|
133 |
+
backend_args=backend_args)
|
134 |
+
|
135 |
+
unlabeled_dataset = dict(
|
136 |
+
type=dataset_type,
|
137 |
+
data_root=data_root,
|
138 |
+
ann_file='annotations/instances_unlabeled2017.json',
|
139 |
+
data_prefix=dict(img='unlabeled2017/'),
|
140 |
+
filter_cfg=dict(filter_empty_gt=False),
|
141 |
+
pipeline=unsup_pipeline,
|
142 |
+
backend_args=backend_args)
|
143 |
+
|
144 |
+
train_dataloader = dict(
|
145 |
+
batch_size=batch_size,
|
146 |
+
num_workers=num_workers,
|
147 |
+
persistent_workers=True,
|
148 |
+
sampler=dict(
|
149 |
+
type='GroupMultiSourceSampler',
|
150 |
+
batch_size=batch_size,
|
151 |
+
source_ratio=[1, 4]),
|
152 |
+
dataset=dict(
|
153 |
+
type='ConcatDataset', datasets=[labeled_dataset, unlabeled_dataset]))
|
154 |
+
|
155 |
+
val_dataloader = dict(
|
156 |
+
batch_size=1,
|
157 |
+
num_workers=2,
|
158 |
+
persistent_workers=True,
|
159 |
+
drop_last=False,
|
160 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
161 |
+
dataset=dict(
|
162 |
+
type=dataset_type,
|
163 |
+
data_root=data_root,
|
164 |
+
ann_file='annotations/instances_val2017.json',
|
165 |
+
data_prefix=dict(img='val2017/'),
|
166 |
+
test_mode=True,
|
167 |
+
pipeline=test_pipeline,
|
168 |
+
backend_args=backend_args))
|
169 |
+
|
170 |
+
test_dataloader = val_dataloader
|
171 |
+
|
172 |
+
val_evaluator = dict(
|
173 |
+
type='CocoMetric',
|
174 |
+
ann_file=data_root + 'annotations/instances_val2017.json',
|
175 |
+
metric='bbox',
|
176 |
+
format_only=False,
|
177 |
+
backend_args=backend_args)
|
178 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/voc0712.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'VOCDataset'
|
3 |
+
data_root = 'data/VOCdevkit/'
|
4 |
+
|
5 |
+
# Example to use different file client
|
6 |
+
# Method 1: simply set the data root and let the file I/O module
|
7 |
+
# automatically Infer from prefix (not support LMDB and Memcache yet)
|
8 |
+
|
9 |
+
# data_root = 's3://openmmlab/datasets/detection/segmentation/VOCdevkit/'
|
10 |
+
|
11 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
12 |
+
# backend_args = dict(
|
13 |
+
# backend='petrel',
|
14 |
+
# path_mapping=dict({
|
15 |
+
# './data/': 's3://openmmlab/datasets/segmentation/',
|
16 |
+
# 'data/': 's3://openmmlab/datasets/segmentation/'
|
17 |
+
# }))
|
18 |
+
backend_args = None
|
19 |
+
|
20 |
+
train_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
22 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
23 |
+
dict(type='Resize', scale=(1000, 600), keep_ratio=True),
|
24 |
+
dict(type='RandomFlip', prob=0.5),
|
25 |
+
dict(type='PackDetInputs')
|
26 |
+
]
|
27 |
+
test_pipeline = [
|
28 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
29 |
+
dict(type='Resize', scale=(1000, 600), keep_ratio=True),
|
30 |
+
# avoid bboxes being resized
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
32 |
+
dict(
|
33 |
+
type='PackDetInputs',
|
34 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
35 |
+
'scale_factor'))
|
36 |
+
]
|
37 |
+
train_dataloader = dict(
|
38 |
+
batch_size=2,
|
39 |
+
num_workers=2,
|
40 |
+
persistent_workers=True,
|
41 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
42 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
43 |
+
dataset=dict(
|
44 |
+
type='RepeatDataset',
|
45 |
+
times=3,
|
46 |
+
dataset=dict(
|
47 |
+
type='ConcatDataset',
|
48 |
+
# VOCDataset will add different `dataset_type` in dataset.metainfo,
|
49 |
+
# which will get error if using ConcatDataset. Adding
|
50 |
+
# `ignore_keys` can avoid this error.
|
51 |
+
ignore_keys=['dataset_type'],
|
52 |
+
datasets=[
|
53 |
+
dict(
|
54 |
+
type=dataset_type,
|
55 |
+
data_root=data_root,
|
56 |
+
ann_file='VOC2007/ImageSets/Main/trainval.txt',
|
57 |
+
data_prefix=dict(sub_data_root='VOC2007/'),
|
58 |
+
filter_cfg=dict(
|
59 |
+
filter_empty_gt=True, min_size=32, bbox_min_size=32),
|
60 |
+
pipeline=train_pipeline,
|
61 |
+
backend_args=backend_args),
|
62 |
+
dict(
|
63 |
+
type=dataset_type,
|
64 |
+
data_root=data_root,
|
65 |
+
ann_file='VOC2012/ImageSets/Main/trainval.txt',
|
66 |
+
data_prefix=dict(sub_data_root='VOC2012/'),
|
67 |
+
filter_cfg=dict(
|
68 |
+
filter_empty_gt=True, min_size=32, bbox_min_size=32),
|
69 |
+
pipeline=train_pipeline,
|
70 |
+
backend_args=backend_args)
|
71 |
+
])))
|
72 |
+
|
73 |
+
val_dataloader = dict(
|
74 |
+
batch_size=1,
|
75 |
+
num_workers=2,
|
76 |
+
persistent_workers=True,
|
77 |
+
drop_last=False,
|
78 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
79 |
+
dataset=dict(
|
80 |
+
type=dataset_type,
|
81 |
+
data_root=data_root,
|
82 |
+
ann_file='VOC2007/ImageSets/Main/test.txt',
|
83 |
+
data_prefix=dict(sub_data_root='VOC2007/'),
|
84 |
+
test_mode=True,
|
85 |
+
pipeline=test_pipeline,
|
86 |
+
backend_args=backend_args))
|
87 |
+
test_dataloader = val_dataloader
|
88 |
+
|
89 |
+
# Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL
|
90 |
+
# VOC2012 defaults to use 'area'.
|
91 |
+
val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points')
|
92 |
+
test_evaluator = val_evaluator
|
configs/_base_/datasets/wider_face.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'WIDERFaceDataset'
|
3 |
+
data_root = 'data/WIDERFace/'
|
4 |
+
# Example to use different file client
|
5 |
+
# Method 1: simply set the data root and let the file I/O module
|
6 |
+
# automatically infer from prefix (not support LMDB and Memcache yet)
|
7 |
+
|
8 |
+
# data_root = 's3://openmmlab/datasets/detection/cityscapes/'
|
9 |
+
|
10 |
+
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
|
11 |
+
# backend_args = dict(
|
12 |
+
# backend='petrel',
|
13 |
+
# path_mapping=dict({
|
14 |
+
# './data/': 's3://openmmlab/datasets/detection/',
|
15 |
+
# 'data/': 's3://openmmlab/datasets/detection/'
|
16 |
+
# }))
|
17 |
+
backend_args = None
|
18 |
+
|
19 |
+
img_scale = (640, 640) # VGA resolution
|
20 |
+
|
21 |
+
train_pipeline = [
|
22 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
23 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
24 |
+
dict(type='Resize', scale=img_scale, keep_ratio=True),
|
25 |
+
dict(type='RandomFlip', prob=0.5),
|
26 |
+
dict(type='PackDetInputs')
|
27 |
+
]
|
28 |
+
test_pipeline = [
|
29 |
+
dict(type='LoadImageFromFile', backend_args=backend_args),
|
30 |
+
dict(type='Resize', scale=img_scale, keep_ratio=True),
|
31 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
32 |
+
dict(
|
33 |
+
type='PackDetInputs',
|
34 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
35 |
+
'scale_factor'))
|
36 |
+
]
|
37 |
+
|
38 |
+
train_dataloader = dict(
|
39 |
+
batch_size=2,
|
40 |
+
num_workers=2,
|
41 |
+
persistent_workers=True,
|
42 |
+
drop_last=False,
|
43 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
44 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
45 |
+
dataset=dict(
|
46 |
+
type=dataset_type,
|
47 |
+
data_root=data_root,
|
48 |
+
ann_file='train.txt',
|
49 |
+
data_prefix=dict(img='WIDER_train'),
|
50 |
+
filter_cfg=dict(filter_empty_gt=True, bbox_min_size=17, min_size=32),
|
51 |
+
pipeline=train_pipeline))
|
52 |
+
|
53 |
+
val_dataloader = dict(
|
54 |
+
batch_size=1,
|
55 |
+
num_workers=2,
|
56 |
+
persistent_workers=True,
|
57 |
+
drop_last=False,
|
58 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
59 |
+
dataset=dict(
|
60 |
+
type=dataset_type,
|
61 |
+
data_root=data_root,
|
62 |
+
ann_file='val.txt',
|
63 |
+
data_prefix=dict(img='WIDER_val'),
|
64 |
+
test_mode=True,
|
65 |
+
pipeline=test_pipeline))
|
66 |
+
test_dataloader = val_dataloader
|
67 |
+
|
68 |
+
val_evaluator = dict(
|
69 |
+
# TODO: support WiderFace-Evaluation for easy, medium, hard cases
|
70 |
+
type='VOCMetric',
|
71 |
+
metric='mAP',
|
72 |
+
eval_mode='11points')
|
73 |
+
test_evaluator = val_evaluator
|
configs/_base_/default_runtime.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_scope = 'mmdet'
|
2 |
+
|
3 |
+
default_hooks = dict(
|
4 |
+
timer=dict(type='IterTimerHook'),
|
5 |
+
logger=dict(type='LoggerHook', interval=50),
|
6 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
7 |
+
# checkpoint=dict(type='CheckpointHook',interval=-1, by_epoch=True, save_best='auto'),
|
8 |
+
checkpoint=dict(type='CheckpointHook', interval=999999, by_epoch=True),
|
9 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
10 |
+
visualization=dict(type='DetVisualizationHook'))
|
11 |
+
|
12 |
+
env_cfg = dict(
|
13 |
+
cudnn_benchmark=False,
|
14 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
15 |
+
dist_cfg=dict(backend='nccl'),
|
16 |
+
)
|
17 |
+
|
18 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
19 |
+
visualizer = dict(
|
20 |
+
type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
|
21 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
22 |
+
|
23 |
+
log_level = 'INFO'
|
24 |
+
load_from = None
|
25 |
+
resume = False
|
configs/_base_/models/cascade-mask-rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_mask=True,
|
10 |
+
pad_size_divisor=32),
|
11 |
+
backbone=dict(
|
12 |
+
type='ResNet',
|
13 |
+
depth=50,
|
14 |
+
num_stages=4,
|
15 |
+
out_indices=(0, 1, 2, 3),
|
16 |
+
frozen_stages=1,
|
17 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
18 |
+
norm_eval=True,
|
19 |
+
style='pytorch',
|
20 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
21 |
+
neck=dict(
|
22 |
+
type='FPN',
|
23 |
+
in_channels=[256, 512, 1024, 2048],
|
24 |
+
out_channels=256,
|
25 |
+
num_outs=5),
|
26 |
+
rpn_head=dict(
|
27 |
+
type='RPNHead',
|
28 |
+
in_channels=256,
|
29 |
+
feat_channels=256,
|
30 |
+
anchor_generator=dict(
|
31 |
+
type='AnchorGenerator',
|
32 |
+
scales=[8],
|
33 |
+
ratios=[0.5, 1.0, 2.0],
|
34 |
+
strides=[4, 8, 16, 32, 64]),
|
35 |
+
bbox_coder=dict(
|
36 |
+
type='DeltaXYWHBBoxCoder',
|
37 |
+
target_means=[.0, .0, .0, .0],
|
38 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
39 |
+
loss_cls=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
41 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
42 |
+
roi_head=dict(
|
43 |
+
type='CascadeRoIHead',
|
44 |
+
num_stages=3,
|
45 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
46 |
+
bbox_roi_extractor=dict(
|
47 |
+
type='SingleRoIExtractor',
|
48 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
49 |
+
out_channels=256,
|
50 |
+
featmap_strides=[4, 8, 16, 32]),
|
51 |
+
bbox_head=[
|
52 |
+
dict(
|
53 |
+
type='Shared2FCBBoxHead',
|
54 |
+
in_channels=256,
|
55 |
+
fc_out_channels=1024,
|
56 |
+
roi_feat_size=7,
|
57 |
+
num_classes=80,
|
58 |
+
bbox_coder=dict(
|
59 |
+
type='DeltaXYWHBBoxCoder',
|
60 |
+
target_means=[0., 0., 0., 0.],
|
61 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
62 |
+
reg_class_agnostic=True,
|
63 |
+
loss_cls=dict(
|
64 |
+
type='CrossEntropyLoss',
|
65 |
+
use_sigmoid=False,
|
66 |
+
loss_weight=1.0),
|
67 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
68 |
+
loss_weight=1.0)),
|
69 |
+
dict(
|
70 |
+
type='Shared2FCBBoxHead',
|
71 |
+
in_channels=256,
|
72 |
+
fc_out_channels=1024,
|
73 |
+
roi_feat_size=7,
|
74 |
+
num_classes=80,
|
75 |
+
bbox_coder=dict(
|
76 |
+
type='DeltaXYWHBBoxCoder',
|
77 |
+
target_means=[0., 0., 0., 0.],
|
78 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
79 |
+
reg_class_agnostic=True,
|
80 |
+
loss_cls=dict(
|
81 |
+
type='CrossEntropyLoss',
|
82 |
+
use_sigmoid=False,
|
83 |
+
loss_weight=1.0),
|
84 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
85 |
+
loss_weight=1.0)),
|
86 |
+
dict(
|
87 |
+
type='Shared2FCBBoxHead',
|
88 |
+
in_channels=256,
|
89 |
+
fc_out_channels=1024,
|
90 |
+
roi_feat_size=7,
|
91 |
+
num_classes=80,
|
92 |
+
bbox_coder=dict(
|
93 |
+
type='DeltaXYWHBBoxCoder',
|
94 |
+
target_means=[0., 0., 0., 0.],
|
95 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
96 |
+
reg_class_agnostic=True,
|
97 |
+
loss_cls=dict(
|
98 |
+
type='CrossEntropyLoss',
|
99 |
+
use_sigmoid=False,
|
100 |
+
loss_weight=1.0),
|
101 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
102 |
+
],
|
103 |
+
mask_roi_extractor=dict(
|
104 |
+
type='SingleRoIExtractor',
|
105 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
106 |
+
out_channels=256,
|
107 |
+
featmap_strides=[4, 8, 16, 32]),
|
108 |
+
mask_head=dict(
|
109 |
+
type='FCNMaskHead',
|
110 |
+
num_convs=4,
|
111 |
+
in_channels=256,
|
112 |
+
conv_out_channels=256,
|
113 |
+
num_classes=80,
|
114 |
+
loss_mask=dict(
|
115 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
116 |
+
# model training and testing settings
|
117 |
+
train_cfg=dict(
|
118 |
+
rpn=dict(
|
119 |
+
assigner=dict(
|
120 |
+
type='MaxIoUAssigner',
|
121 |
+
pos_iou_thr=0.7,
|
122 |
+
neg_iou_thr=0.3,
|
123 |
+
min_pos_iou=0.3,
|
124 |
+
match_low_quality=True,
|
125 |
+
ignore_iof_thr=-1),
|
126 |
+
sampler=dict(
|
127 |
+
type='RandomSampler',
|
128 |
+
num=256,
|
129 |
+
pos_fraction=0.5,
|
130 |
+
neg_pos_ub=-1,
|
131 |
+
add_gt_as_proposals=False),
|
132 |
+
allowed_border=0,
|
133 |
+
pos_weight=-1,
|
134 |
+
debug=False),
|
135 |
+
rpn_proposal=dict(
|
136 |
+
nms_pre=2000,
|
137 |
+
max_per_img=2000,
|
138 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
139 |
+
min_bbox_size=0),
|
140 |
+
rcnn=[
|
141 |
+
dict(
|
142 |
+
assigner=dict(
|
143 |
+
type='MaxIoUAssigner',
|
144 |
+
pos_iou_thr=0.5,
|
145 |
+
neg_iou_thr=0.5,
|
146 |
+
min_pos_iou=0.5,
|
147 |
+
match_low_quality=False,
|
148 |
+
ignore_iof_thr=-1),
|
149 |
+
sampler=dict(
|
150 |
+
type='RandomSampler',
|
151 |
+
num=512,
|
152 |
+
pos_fraction=0.25,
|
153 |
+
neg_pos_ub=-1,
|
154 |
+
add_gt_as_proposals=True),
|
155 |
+
mask_size=28,
|
156 |
+
pos_weight=-1,
|
157 |
+
debug=False),
|
158 |
+
dict(
|
159 |
+
assigner=dict(
|
160 |
+
type='MaxIoUAssigner',
|
161 |
+
pos_iou_thr=0.6,
|
162 |
+
neg_iou_thr=0.6,
|
163 |
+
min_pos_iou=0.6,
|
164 |
+
match_low_quality=False,
|
165 |
+
ignore_iof_thr=-1),
|
166 |
+
sampler=dict(
|
167 |
+
type='RandomSampler',
|
168 |
+
num=512,
|
169 |
+
pos_fraction=0.25,
|
170 |
+
neg_pos_ub=-1,
|
171 |
+
add_gt_as_proposals=True),
|
172 |
+
mask_size=28,
|
173 |
+
pos_weight=-1,
|
174 |
+
debug=False),
|
175 |
+
dict(
|
176 |
+
assigner=dict(
|
177 |
+
type='MaxIoUAssigner',
|
178 |
+
pos_iou_thr=0.7,
|
179 |
+
neg_iou_thr=0.7,
|
180 |
+
min_pos_iou=0.7,
|
181 |
+
match_low_quality=False,
|
182 |
+
ignore_iof_thr=-1),
|
183 |
+
sampler=dict(
|
184 |
+
type='RandomSampler',
|
185 |
+
num=512,
|
186 |
+
pos_fraction=0.25,
|
187 |
+
neg_pos_ub=-1,
|
188 |
+
add_gt_as_proposals=True),
|
189 |
+
mask_size=28,
|
190 |
+
pos_weight=-1,
|
191 |
+
debug=False)
|
192 |
+
]),
|
193 |
+
test_cfg=dict(
|
194 |
+
rpn=dict(
|
195 |
+
nms_pre=1000,
|
196 |
+
max_per_img=1000,
|
197 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
198 |
+
min_bbox_size=0),
|
199 |
+
rcnn=dict(
|
200 |
+
score_thr=0.05,
|
201 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
202 |
+
max_per_img=100,
|
203 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/cascade-rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
num_outs=5),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=256,
|
28 |
+
feat_channels=256,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[8],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[4, 8, 16, 32, 64]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
41 |
+
roi_head=dict(
|
42 |
+
type='CascadeRoIHead',
|
43 |
+
num_stages=3,
|
44 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
45 |
+
bbox_roi_extractor=dict(
|
46 |
+
type='SingleRoIExtractor',
|
47 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
48 |
+
out_channels=256,
|
49 |
+
featmap_strides=[4, 8, 16, 32]),
|
50 |
+
bbox_head=[
|
51 |
+
dict(
|
52 |
+
type='Shared2FCBBoxHead',
|
53 |
+
in_channels=256,
|
54 |
+
fc_out_channels=1024,
|
55 |
+
roi_feat_size=7,
|
56 |
+
num_classes=80,
|
57 |
+
bbox_coder=dict(
|
58 |
+
type='DeltaXYWHBBoxCoder',
|
59 |
+
target_means=[0., 0., 0., 0.],
|
60 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
61 |
+
reg_class_agnostic=True,
|
62 |
+
loss_cls=dict(
|
63 |
+
type='CrossEntropyLoss',
|
64 |
+
use_sigmoid=False,
|
65 |
+
loss_weight=1.0),
|
66 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
67 |
+
loss_weight=1.0)),
|
68 |
+
dict(
|
69 |
+
type='Shared2FCBBoxHead',
|
70 |
+
in_channels=256,
|
71 |
+
fc_out_channels=1024,
|
72 |
+
roi_feat_size=7,
|
73 |
+
num_classes=80,
|
74 |
+
bbox_coder=dict(
|
75 |
+
type='DeltaXYWHBBoxCoder',
|
76 |
+
target_means=[0., 0., 0., 0.],
|
77 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
78 |
+
reg_class_agnostic=True,
|
79 |
+
loss_cls=dict(
|
80 |
+
type='CrossEntropyLoss',
|
81 |
+
use_sigmoid=False,
|
82 |
+
loss_weight=1.0),
|
83 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
|
84 |
+
loss_weight=1.0)),
|
85 |
+
dict(
|
86 |
+
type='Shared2FCBBoxHead',
|
87 |
+
in_channels=256,
|
88 |
+
fc_out_channels=1024,
|
89 |
+
roi_feat_size=7,
|
90 |
+
num_classes=80,
|
91 |
+
bbox_coder=dict(
|
92 |
+
type='DeltaXYWHBBoxCoder',
|
93 |
+
target_means=[0., 0., 0., 0.],
|
94 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
95 |
+
reg_class_agnostic=True,
|
96 |
+
loss_cls=dict(
|
97 |
+
type='CrossEntropyLoss',
|
98 |
+
use_sigmoid=False,
|
99 |
+
loss_weight=1.0),
|
100 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
101 |
+
]),
|
102 |
+
# model training and testing settings
|
103 |
+
train_cfg=dict(
|
104 |
+
rpn=dict(
|
105 |
+
assigner=dict(
|
106 |
+
type='MaxIoUAssigner',
|
107 |
+
pos_iou_thr=0.7,
|
108 |
+
neg_iou_thr=0.3,
|
109 |
+
min_pos_iou=0.3,
|
110 |
+
match_low_quality=True,
|
111 |
+
ignore_iof_thr=-1),
|
112 |
+
sampler=dict(
|
113 |
+
type='RandomSampler',
|
114 |
+
num=256,
|
115 |
+
pos_fraction=0.5,
|
116 |
+
neg_pos_ub=-1,
|
117 |
+
add_gt_as_proposals=False),
|
118 |
+
allowed_border=0,
|
119 |
+
pos_weight=-1,
|
120 |
+
debug=False),
|
121 |
+
rpn_proposal=dict(
|
122 |
+
nms_pre=2000,
|
123 |
+
max_per_img=2000,
|
124 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
125 |
+
min_bbox_size=0),
|
126 |
+
rcnn=[
|
127 |
+
dict(
|
128 |
+
assigner=dict(
|
129 |
+
type='MaxIoUAssigner',
|
130 |
+
pos_iou_thr=0.5,
|
131 |
+
neg_iou_thr=0.5,
|
132 |
+
min_pos_iou=0.5,
|
133 |
+
match_low_quality=False,
|
134 |
+
ignore_iof_thr=-1),
|
135 |
+
sampler=dict(
|
136 |
+
type='RandomSampler',
|
137 |
+
num=512,
|
138 |
+
pos_fraction=0.25,
|
139 |
+
neg_pos_ub=-1,
|
140 |
+
add_gt_as_proposals=True),
|
141 |
+
pos_weight=-1,
|
142 |
+
debug=False),
|
143 |
+
dict(
|
144 |
+
assigner=dict(
|
145 |
+
type='MaxIoUAssigner',
|
146 |
+
pos_iou_thr=0.6,
|
147 |
+
neg_iou_thr=0.6,
|
148 |
+
min_pos_iou=0.6,
|
149 |
+
match_low_quality=False,
|
150 |
+
ignore_iof_thr=-1),
|
151 |
+
sampler=dict(
|
152 |
+
type='RandomSampler',
|
153 |
+
num=512,
|
154 |
+
pos_fraction=0.25,
|
155 |
+
neg_pos_ub=-1,
|
156 |
+
add_gt_as_proposals=True),
|
157 |
+
pos_weight=-1,
|
158 |
+
debug=False),
|
159 |
+
dict(
|
160 |
+
assigner=dict(
|
161 |
+
type='MaxIoUAssigner',
|
162 |
+
pos_iou_thr=0.7,
|
163 |
+
neg_iou_thr=0.7,
|
164 |
+
min_pos_iou=0.7,
|
165 |
+
match_low_quality=False,
|
166 |
+
ignore_iof_thr=-1),
|
167 |
+
sampler=dict(
|
168 |
+
type='RandomSampler',
|
169 |
+
num=512,
|
170 |
+
pos_fraction=0.25,
|
171 |
+
neg_pos_ub=-1,
|
172 |
+
add_gt_as_proposals=True),
|
173 |
+
pos_weight=-1,
|
174 |
+
debug=False)
|
175 |
+
]),
|
176 |
+
test_cfg=dict(
|
177 |
+
rpn=dict(
|
178 |
+
nms_pre=1000,
|
179 |
+
max_per_img=1000,
|
180 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
181 |
+
min_bbox_size=0),
|
182 |
+
rcnn=dict(
|
183 |
+
score_thr=0.05,
|
184 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
185 |
+
max_per_img=100)))
|
configs/_base_/models/fast-rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='FastRCNN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
num_outs=5),
|
25 |
+
roi_head=dict(
|
26 |
+
type='StandardRoIHead',
|
27 |
+
bbox_roi_extractor=dict(
|
28 |
+
type='SingleRoIExtractor',
|
29 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
30 |
+
out_channels=256,
|
31 |
+
featmap_strides=[4, 8, 16, 32]),
|
32 |
+
bbox_head=dict(
|
33 |
+
type='Shared2FCBBoxHead',
|
34 |
+
in_channels=256,
|
35 |
+
fc_out_channels=1024,
|
36 |
+
roi_feat_size=7,
|
37 |
+
num_classes=80,
|
38 |
+
bbox_coder=dict(
|
39 |
+
type='DeltaXYWHBBoxCoder',
|
40 |
+
target_means=[0., 0., 0., 0.],
|
41 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
42 |
+
reg_class_agnostic=False,
|
43 |
+
loss_cls=dict(
|
44 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
45 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
46 |
+
# model training and testing settings
|
47 |
+
train_cfg=dict(
|
48 |
+
rcnn=dict(
|
49 |
+
assigner=dict(
|
50 |
+
type='MaxIoUAssigner',
|
51 |
+
pos_iou_thr=0.5,
|
52 |
+
neg_iou_thr=0.5,
|
53 |
+
min_pos_iou=0.5,
|
54 |
+
match_low_quality=False,
|
55 |
+
ignore_iof_thr=-1),
|
56 |
+
sampler=dict(
|
57 |
+
type='RandomSampler',
|
58 |
+
num=512,
|
59 |
+
pos_fraction=0.25,
|
60 |
+
neg_pos_ub=-1,
|
61 |
+
add_gt_as_proposals=True),
|
62 |
+
pos_weight=-1,
|
63 |
+
debug=False)),
|
64 |
+
test_cfg=dict(
|
65 |
+
rcnn=dict(
|
66 |
+
score_thr=0.05,
|
67 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
68 |
+
max_per_img=100)))
|
configs/_base_/models/faster-rcnn_r50-caffe-c4.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
3 |
+
model = dict(
|
4 |
+
type='FasterRCNN',
|
5 |
+
data_preprocessor=dict(
|
6 |
+
type='DetDataPreprocessor',
|
7 |
+
mean=[103.530, 116.280, 123.675],
|
8 |
+
std=[1.0, 1.0, 1.0],
|
9 |
+
bgr_to_rgb=False,
|
10 |
+
pad_size_divisor=32),
|
11 |
+
backbone=dict(
|
12 |
+
type='ResNet',
|
13 |
+
depth=50,
|
14 |
+
num_stages=3,
|
15 |
+
strides=(1, 2, 2),
|
16 |
+
dilations=(1, 1, 1),
|
17 |
+
out_indices=(2, ),
|
18 |
+
frozen_stages=1,
|
19 |
+
norm_cfg=norm_cfg,
|
20 |
+
norm_eval=True,
|
21 |
+
style='caffe',
|
22 |
+
init_cfg=dict(
|
23 |
+
type='Pretrained',
|
24 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=1024,
|
28 |
+
feat_channels=1024,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[2, 4, 8, 16, 32],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[16]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
roi_head=dict(
|
42 |
+
type='StandardRoIHead',
|
43 |
+
shared_head=dict(
|
44 |
+
type='ResLayer',
|
45 |
+
depth=50,
|
46 |
+
stage=3,
|
47 |
+
stride=2,
|
48 |
+
dilation=1,
|
49 |
+
style='caffe',
|
50 |
+
norm_cfg=norm_cfg,
|
51 |
+
norm_eval=True,
|
52 |
+
init_cfg=dict(
|
53 |
+
type='Pretrained',
|
54 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
55 |
+
bbox_roi_extractor=dict(
|
56 |
+
type='SingleRoIExtractor',
|
57 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
58 |
+
out_channels=1024,
|
59 |
+
featmap_strides=[16]),
|
60 |
+
bbox_head=dict(
|
61 |
+
type='BBoxHead',
|
62 |
+
with_avg_pool=True,
|
63 |
+
roi_feat_size=7,
|
64 |
+
in_channels=2048,
|
65 |
+
num_classes=80,
|
66 |
+
bbox_coder=dict(
|
67 |
+
type='DeltaXYWHBBoxCoder',
|
68 |
+
target_means=[0., 0., 0., 0.],
|
69 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
70 |
+
reg_class_agnostic=False,
|
71 |
+
loss_cls=dict(
|
72 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
73 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
74 |
+
# model training and testing settings
|
75 |
+
train_cfg=dict(
|
76 |
+
rpn=dict(
|
77 |
+
assigner=dict(
|
78 |
+
type='MaxIoUAssigner',
|
79 |
+
pos_iou_thr=0.7,
|
80 |
+
neg_iou_thr=0.3,
|
81 |
+
min_pos_iou=0.3,
|
82 |
+
match_low_quality=True,
|
83 |
+
ignore_iof_thr=-1),
|
84 |
+
sampler=dict(
|
85 |
+
type='RandomSampler',
|
86 |
+
num=256,
|
87 |
+
pos_fraction=0.5,
|
88 |
+
neg_pos_ub=-1,
|
89 |
+
add_gt_as_proposals=False),
|
90 |
+
allowed_border=-1,
|
91 |
+
pos_weight=-1,
|
92 |
+
debug=False),
|
93 |
+
rpn_proposal=dict(
|
94 |
+
nms_pre=12000,
|
95 |
+
max_per_img=2000,
|
96 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
97 |
+
min_bbox_size=0),
|
98 |
+
rcnn=dict(
|
99 |
+
assigner=dict(
|
100 |
+
type='MaxIoUAssigner',
|
101 |
+
pos_iou_thr=0.5,
|
102 |
+
neg_iou_thr=0.5,
|
103 |
+
min_pos_iou=0.5,
|
104 |
+
match_low_quality=False,
|
105 |
+
ignore_iof_thr=-1),
|
106 |
+
sampler=dict(
|
107 |
+
type='RandomSampler',
|
108 |
+
num=512,
|
109 |
+
pos_fraction=0.25,
|
110 |
+
neg_pos_ub=-1,
|
111 |
+
add_gt_as_proposals=True),
|
112 |
+
pos_weight=-1,
|
113 |
+
debug=False)),
|
114 |
+
test_cfg=dict(
|
115 |
+
rpn=dict(
|
116 |
+
nms_pre=6000,
|
117 |
+
max_per_img=1000,
|
118 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
119 |
+
min_bbox_size=0),
|
120 |
+
rcnn=dict(
|
121 |
+
score_thr=0.05,
|
122 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
123 |
+
max_per_img=100)))
|
configs/_base_/models/faster-rcnn_r50-caffe-dc5.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
3 |
+
model = dict(
|
4 |
+
type='FasterRCNN',
|
5 |
+
data_preprocessor=dict(
|
6 |
+
type='DetDataPreprocessor',
|
7 |
+
mean=[103.530, 116.280, 123.675],
|
8 |
+
std=[1.0, 1.0, 1.0],
|
9 |
+
bgr_to_rgb=False,
|
10 |
+
pad_size_divisor=32),
|
11 |
+
backbone=dict(
|
12 |
+
type='ResNet',
|
13 |
+
depth=50,
|
14 |
+
num_stages=4,
|
15 |
+
strides=(1, 2, 2, 1),
|
16 |
+
dilations=(1, 1, 1, 2),
|
17 |
+
out_indices=(3, ),
|
18 |
+
frozen_stages=1,
|
19 |
+
norm_cfg=norm_cfg,
|
20 |
+
norm_eval=True,
|
21 |
+
style='caffe',
|
22 |
+
init_cfg=dict(
|
23 |
+
type='Pretrained',
|
24 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=2048,
|
28 |
+
feat_channels=2048,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[2, 4, 8, 16, 32],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[16]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
roi_head=dict(
|
42 |
+
type='StandardRoIHead',
|
43 |
+
bbox_roi_extractor=dict(
|
44 |
+
type='SingleRoIExtractor',
|
45 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
46 |
+
out_channels=2048,
|
47 |
+
featmap_strides=[16]),
|
48 |
+
bbox_head=dict(
|
49 |
+
type='Shared2FCBBoxHead',
|
50 |
+
in_channels=2048,
|
51 |
+
fc_out_channels=1024,
|
52 |
+
roi_feat_size=7,
|
53 |
+
num_classes=80,
|
54 |
+
bbox_coder=dict(
|
55 |
+
type='DeltaXYWHBBoxCoder',
|
56 |
+
target_means=[0., 0., 0., 0.],
|
57 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
58 |
+
reg_class_agnostic=False,
|
59 |
+
loss_cls=dict(
|
60 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
61 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
62 |
+
# model training and testing settings
|
63 |
+
train_cfg=dict(
|
64 |
+
rpn=dict(
|
65 |
+
assigner=dict(
|
66 |
+
type='MaxIoUAssigner',
|
67 |
+
pos_iou_thr=0.7,
|
68 |
+
neg_iou_thr=0.3,
|
69 |
+
min_pos_iou=0.3,
|
70 |
+
match_low_quality=True,
|
71 |
+
ignore_iof_thr=-1),
|
72 |
+
sampler=dict(
|
73 |
+
type='RandomSampler',
|
74 |
+
num=256,
|
75 |
+
pos_fraction=0.5,
|
76 |
+
neg_pos_ub=-1,
|
77 |
+
add_gt_as_proposals=False),
|
78 |
+
allowed_border=0,
|
79 |
+
pos_weight=-1,
|
80 |
+
debug=False),
|
81 |
+
rpn_proposal=dict(
|
82 |
+
nms_pre=12000,
|
83 |
+
max_per_img=2000,
|
84 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
85 |
+
min_bbox_size=0),
|
86 |
+
rcnn=dict(
|
87 |
+
assigner=dict(
|
88 |
+
type='MaxIoUAssigner',
|
89 |
+
pos_iou_thr=0.5,
|
90 |
+
neg_iou_thr=0.5,
|
91 |
+
min_pos_iou=0.5,
|
92 |
+
match_low_quality=False,
|
93 |
+
ignore_iof_thr=-1),
|
94 |
+
sampler=dict(
|
95 |
+
type='RandomSampler',
|
96 |
+
num=512,
|
97 |
+
pos_fraction=0.25,
|
98 |
+
neg_pos_ub=-1,
|
99 |
+
add_gt_as_proposals=True),
|
100 |
+
pos_weight=-1,
|
101 |
+
debug=False)),
|
102 |
+
test_cfg=dict(
|
103 |
+
rpn=dict(
|
104 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
105 |
+
nms_pre=6000,
|
106 |
+
max_per_img=1000,
|
107 |
+
min_bbox_size=0),
|
108 |
+
rcnn=dict(
|
109 |
+
score_thr=0.05,
|
110 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
111 |
+
max_per_img=100)))
|
configs/_base_/models/faster-rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='FasterRCNN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
num_outs=5),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=256,
|
28 |
+
feat_channels=256,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[8],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[4, 8, 16, 32, 64]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
roi_head=dict(
|
42 |
+
type='StandardRoIHead',
|
43 |
+
bbox_roi_extractor=dict(
|
44 |
+
type='SingleRoIExtractor',
|
45 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
46 |
+
out_channels=256,
|
47 |
+
featmap_strides=[4, 8, 16, 32]),
|
48 |
+
bbox_head=dict(
|
49 |
+
type='Shared2FCBBoxHead',
|
50 |
+
in_channels=256,
|
51 |
+
fc_out_channels=1024,
|
52 |
+
roi_feat_size=7,
|
53 |
+
num_classes=80,
|
54 |
+
bbox_coder=dict(
|
55 |
+
type='DeltaXYWHBBoxCoder',
|
56 |
+
target_means=[0., 0., 0., 0.],
|
57 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
58 |
+
reg_class_agnostic=False,
|
59 |
+
loss_cls=dict(
|
60 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
61 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
62 |
+
# model training and testing settings
|
63 |
+
train_cfg=dict(
|
64 |
+
rpn=dict(
|
65 |
+
assigner=dict(
|
66 |
+
type='MaxIoUAssigner',
|
67 |
+
pos_iou_thr=0.7,
|
68 |
+
neg_iou_thr=0.3,
|
69 |
+
min_pos_iou=0.3,
|
70 |
+
match_low_quality=True,
|
71 |
+
ignore_iof_thr=-1),
|
72 |
+
sampler=dict(
|
73 |
+
type='RandomSampler',
|
74 |
+
num=256,
|
75 |
+
pos_fraction=0.5,
|
76 |
+
neg_pos_ub=-1,
|
77 |
+
add_gt_as_proposals=False),
|
78 |
+
allowed_border=-1,
|
79 |
+
pos_weight=-1,
|
80 |
+
debug=False),
|
81 |
+
rpn_proposal=dict(
|
82 |
+
nms_pre=2000,
|
83 |
+
max_per_img=1000,
|
84 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
85 |
+
min_bbox_size=0),
|
86 |
+
rcnn=dict(
|
87 |
+
assigner=dict(
|
88 |
+
type='MaxIoUAssigner',
|
89 |
+
pos_iou_thr=0.5,
|
90 |
+
neg_iou_thr=0.5,
|
91 |
+
min_pos_iou=0.5,
|
92 |
+
match_low_quality=False,
|
93 |
+
ignore_iof_thr=-1),
|
94 |
+
sampler=dict(
|
95 |
+
type='RandomSampler',
|
96 |
+
num=512,
|
97 |
+
pos_fraction=0.25,
|
98 |
+
neg_pos_ub=-1,
|
99 |
+
add_gt_as_proposals=True),
|
100 |
+
pos_weight=-1,
|
101 |
+
debug=False)),
|
102 |
+
test_cfg=dict(
|
103 |
+
rpn=dict(
|
104 |
+
nms_pre=1000,
|
105 |
+
max_per_img=1000,
|
106 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
107 |
+
min_bbox_size=0),
|
108 |
+
rcnn=dict(
|
109 |
+
score_thr=0.05,
|
110 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
111 |
+
max_per_img=100)
|
112 |
+
# soft-nms is also supported for rcnn testing
|
113 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
114 |
+
))
|
configs/_base_/models/mask-rcnn_r50-caffe-c4.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
3 |
+
model = dict(
|
4 |
+
type='MaskRCNN',
|
5 |
+
data_preprocessor=dict(
|
6 |
+
type='DetDataPreprocessor',
|
7 |
+
mean=[103.530, 116.280, 123.675],
|
8 |
+
std=[1.0, 1.0, 1.0],
|
9 |
+
bgr_to_rgb=False,
|
10 |
+
pad_mask=True,
|
11 |
+
pad_size_divisor=32),
|
12 |
+
backbone=dict(
|
13 |
+
type='ResNet',
|
14 |
+
depth=50,
|
15 |
+
num_stages=3,
|
16 |
+
strides=(1, 2, 2),
|
17 |
+
dilations=(1, 1, 1),
|
18 |
+
out_indices=(2, ),
|
19 |
+
frozen_stages=1,
|
20 |
+
norm_cfg=norm_cfg,
|
21 |
+
norm_eval=True,
|
22 |
+
style='caffe',
|
23 |
+
init_cfg=dict(
|
24 |
+
type='Pretrained',
|
25 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
26 |
+
rpn_head=dict(
|
27 |
+
type='RPNHead',
|
28 |
+
in_channels=1024,
|
29 |
+
feat_channels=1024,
|
30 |
+
anchor_generator=dict(
|
31 |
+
type='AnchorGenerator',
|
32 |
+
scales=[2, 4, 8, 16, 32],
|
33 |
+
ratios=[0.5, 1.0, 2.0],
|
34 |
+
strides=[16]),
|
35 |
+
bbox_coder=dict(
|
36 |
+
type='DeltaXYWHBBoxCoder',
|
37 |
+
target_means=[.0, .0, .0, .0],
|
38 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
39 |
+
loss_cls=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
41 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
42 |
+
roi_head=dict(
|
43 |
+
type='StandardRoIHead',
|
44 |
+
shared_head=dict(
|
45 |
+
type='ResLayer',
|
46 |
+
depth=50,
|
47 |
+
stage=3,
|
48 |
+
stride=2,
|
49 |
+
dilation=1,
|
50 |
+
style='caffe',
|
51 |
+
norm_cfg=norm_cfg,
|
52 |
+
norm_eval=True),
|
53 |
+
bbox_roi_extractor=dict(
|
54 |
+
type='SingleRoIExtractor',
|
55 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
56 |
+
out_channels=1024,
|
57 |
+
featmap_strides=[16]),
|
58 |
+
bbox_head=dict(
|
59 |
+
type='BBoxHead',
|
60 |
+
with_avg_pool=True,
|
61 |
+
roi_feat_size=7,
|
62 |
+
in_channels=2048,
|
63 |
+
num_classes=80,
|
64 |
+
bbox_coder=dict(
|
65 |
+
type='DeltaXYWHBBoxCoder',
|
66 |
+
target_means=[0., 0., 0., 0.],
|
67 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
68 |
+
reg_class_agnostic=False,
|
69 |
+
loss_cls=dict(
|
70 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
71 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
72 |
+
mask_roi_extractor=None,
|
73 |
+
mask_head=dict(
|
74 |
+
type='FCNMaskHead',
|
75 |
+
num_convs=0,
|
76 |
+
in_channels=2048,
|
77 |
+
conv_out_channels=256,
|
78 |
+
num_classes=80,
|
79 |
+
loss_mask=dict(
|
80 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
81 |
+
# model training and testing settings
|
82 |
+
train_cfg=dict(
|
83 |
+
rpn=dict(
|
84 |
+
assigner=dict(
|
85 |
+
type='MaxIoUAssigner',
|
86 |
+
pos_iou_thr=0.7,
|
87 |
+
neg_iou_thr=0.3,
|
88 |
+
min_pos_iou=0.3,
|
89 |
+
match_low_quality=True,
|
90 |
+
ignore_iof_thr=-1),
|
91 |
+
sampler=dict(
|
92 |
+
type='RandomSampler',
|
93 |
+
num=256,
|
94 |
+
pos_fraction=0.5,
|
95 |
+
neg_pos_ub=-1,
|
96 |
+
add_gt_as_proposals=False),
|
97 |
+
allowed_border=0,
|
98 |
+
pos_weight=-1,
|
99 |
+
debug=False),
|
100 |
+
rpn_proposal=dict(
|
101 |
+
nms_pre=12000,
|
102 |
+
max_per_img=2000,
|
103 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
104 |
+
min_bbox_size=0),
|
105 |
+
rcnn=dict(
|
106 |
+
assigner=dict(
|
107 |
+
type='MaxIoUAssigner',
|
108 |
+
pos_iou_thr=0.5,
|
109 |
+
neg_iou_thr=0.5,
|
110 |
+
min_pos_iou=0.5,
|
111 |
+
match_low_quality=False,
|
112 |
+
ignore_iof_thr=-1),
|
113 |
+
sampler=dict(
|
114 |
+
type='RandomSampler',
|
115 |
+
num=512,
|
116 |
+
pos_fraction=0.25,
|
117 |
+
neg_pos_ub=-1,
|
118 |
+
add_gt_as_proposals=True),
|
119 |
+
mask_size=14,
|
120 |
+
pos_weight=-1,
|
121 |
+
debug=False)),
|
122 |
+
test_cfg=dict(
|
123 |
+
rpn=dict(
|
124 |
+
nms_pre=6000,
|
125 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
126 |
+
max_per_img=1000,
|
127 |
+
min_bbox_size=0),
|
128 |
+
rcnn=dict(
|
129 |
+
score_thr=0.05,
|
130 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
131 |
+
max_per_img=100,
|
132 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/mask-rcnn_r50_fpn.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='MaskRCNN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_mask=True,
|
10 |
+
pad_size_divisor=32),
|
11 |
+
backbone=dict(
|
12 |
+
type='ResNet',
|
13 |
+
depth=50,
|
14 |
+
num_stages=4,
|
15 |
+
out_indices=(0, 1, 2, 3),
|
16 |
+
frozen_stages=1,
|
17 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
18 |
+
norm_eval=True,
|
19 |
+
style='pytorch',
|
20 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
21 |
+
neck=dict(
|
22 |
+
type='FPN',
|
23 |
+
in_channels=[256, 512, 1024, 2048],
|
24 |
+
out_channels=256,
|
25 |
+
num_outs=5),
|
26 |
+
rpn_head=dict(
|
27 |
+
type='RPNHead',
|
28 |
+
in_channels=256,
|
29 |
+
feat_channels=256,
|
30 |
+
anchor_generator=dict(
|
31 |
+
type='AnchorGenerator',
|
32 |
+
scales=[8],
|
33 |
+
ratios=[0.5, 1.0, 2.0],
|
34 |
+
strides=[4, 8, 16, 32, 64]),
|
35 |
+
bbox_coder=dict(
|
36 |
+
type='DeltaXYWHBBoxCoder',
|
37 |
+
target_means=[.0, .0, .0, .0],
|
38 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
39 |
+
loss_cls=dict(
|
40 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
41 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
42 |
+
roi_head=dict(
|
43 |
+
type='StandardRoIHead',
|
44 |
+
bbox_roi_extractor=dict(
|
45 |
+
type='SingleRoIExtractor',
|
46 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
47 |
+
out_channels=256,
|
48 |
+
featmap_strides=[4, 8, 16, 32]),
|
49 |
+
bbox_head=dict(
|
50 |
+
type='Shared2FCBBoxHead',
|
51 |
+
in_channels=256,
|
52 |
+
fc_out_channels=1024,
|
53 |
+
roi_feat_size=7,
|
54 |
+
num_classes=80,
|
55 |
+
bbox_coder=dict(
|
56 |
+
type='DeltaXYWHBBoxCoder',
|
57 |
+
target_means=[0., 0., 0., 0.],
|
58 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
59 |
+
reg_class_agnostic=False,
|
60 |
+
loss_cls=dict(
|
61 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
62 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
63 |
+
mask_roi_extractor=dict(
|
64 |
+
type='SingleRoIExtractor',
|
65 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
66 |
+
out_channels=256,
|
67 |
+
featmap_strides=[4, 8, 16, 32]),
|
68 |
+
mask_head=dict(
|
69 |
+
type='FCNMaskHead',
|
70 |
+
num_convs=4,
|
71 |
+
in_channels=256,
|
72 |
+
conv_out_channels=256,
|
73 |
+
num_classes=80,
|
74 |
+
loss_mask=dict(
|
75 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
76 |
+
# model training and testing settings
|
77 |
+
train_cfg=dict(
|
78 |
+
rpn=dict(
|
79 |
+
assigner=dict(
|
80 |
+
type='MaxIoUAssigner',
|
81 |
+
pos_iou_thr=0.7,
|
82 |
+
neg_iou_thr=0.3,
|
83 |
+
min_pos_iou=0.3,
|
84 |
+
match_low_quality=True,
|
85 |
+
ignore_iof_thr=-1),
|
86 |
+
sampler=dict(
|
87 |
+
type='RandomSampler',
|
88 |
+
num=256,
|
89 |
+
pos_fraction=0.5,
|
90 |
+
neg_pos_ub=-1,
|
91 |
+
add_gt_as_proposals=False),
|
92 |
+
allowed_border=-1,
|
93 |
+
pos_weight=-1,
|
94 |
+
debug=False),
|
95 |
+
rpn_proposal=dict(
|
96 |
+
nms_pre=2000,
|
97 |
+
max_per_img=1000,
|
98 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
99 |
+
min_bbox_size=0),
|
100 |
+
rcnn=dict(
|
101 |
+
assigner=dict(
|
102 |
+
type='MaxIoUAssigner',
|
103 |
+
pos_iou_thr=0.5,
|
104 |
+
neg_iou_thr=0.5,
|
105 |
+
min_pos_iou=0.5,
|
106 |
+
match_low_quality=True,
|
107 |
+
ignore_iof_thr=-1),
|
108 |
+
sampler=dict(
|
109 |
+
type='RandomSampler',
|
110 |
+
num=512,
|
111 |
+
pos_fraction=0.25,
|
112 |
+
neg_pos_ub=-1,
|
113 |
+
add_gt_as_proposals=True),
|
114 |
+
mask_size=28,
|
115 |
+
pos_weight=-1,
|
116 |
+
debug=False)),
|
117 |
+
test_cfg=dict(
|
118 |
+
rpn=dict(
|
119 |
+
nms_pre=1000,
|
120 |
+
max_per_img=1000,
|
121 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
122 |
+
min_bbox_size=0),
|
123 |
+
rcnn=dict(
|
124 |
+
score_thr=0.05,
|
125 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
126 |
+
max_per_img=100,
|
127 |
+
mask_thr_binary=0.5)))
|
configs/_base_/models/retinanet_r50_fpn.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='RetinaNet',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
start_level=1,
|
25 |
+
add_extra_convs='on_input',
|
26 |
+
num_outs=5),
|
27 |
+
bbox_head=dict(
|
28 |
+
type='RetinaHead',
|
29 |
+
num_classes=80,
|
30 |
+
in_channels=256,
|
31 |
+
stacked_convs=4,
|
32 |
+
feat_channels=256,
|
33 |
+
anchor_generator=dict(
|
34 |
+
type='AnchorGenerator',
|
35 |
+
octave_base_scale=4,
|
36 |
+
scales_per_octave=3,
|
37 |
+
ratios=[0.5, 1.0, 2.0],
|
38 |
+
strides=[8, 16, 32, 64, 128]),
|
39 |
+
bbox_coder=dict(
|
40 |
+
type='DeltaXYWHBBoxCoder',
|
41 |
+
target_means=[.0, .0, .0, .0],
|
42 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
43 |
+
loss_cls=dict(
|
44 |
+
type='FocalLoss',
|
45 |
+
use_sigmoid=True,
|
46 |
+
gamma=2.0,
|
47 |
+
alpha=0.25,
|
48 |
+
loss_weight=1.0),
|
49 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
50 |
+
# model training and testing settings
|
51 |
+
train_cfg=dict(
|
52 |
+
assigner=dict(
|
53 |
+
type='MaxIoUAssigner',
|
54 |
+
pos_iou_thr=0.5,
|
55 |
+
neg_iou_thr=0.4,
|
56 |
+
min_pos_iou=0,
|
57 |
+
ignore_iof_thr=-1),
|
58 |
+
sampler=dict(
|
59 |
+
type='PseudoSampler'), # Focal loss should use PseudoSampler
|
60 |
+
allowed_border=-1,
|
61 |
+
pos_weight=-1,
|
62 |
+
debug=False),
|
63 |
+
test_cfg=dict(
|
64 |
+
nms_pre=1000,
|
65 |
+
min_bbox_size=0,
|
66 |
+
score_thr=0.05,
|
67 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
68 |
+
max_per_img=100))
|
configs/_base_/models/rpn_r50-caffe-c4.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='RPN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[103.530, 116.280, 123.675],
|
7 |
+
std=[1.0, 1.0, 1.0],
|
8 |
+
bgr_to_rgb=False,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=3,
|
14 |
+
strides=(1, 2, 2),
|
15 |
+
dilations=(1, 1, 1),
|
16 |
+
out_indices=(2, ),
|
17 |
+
frozen_stages=1,
|
18 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
19 |
+
norm_eval=True,
|
20 |
+
style='caffe',
|
21 |
+
init_cfg=dict(
|
22 |
+
type='Pretrained',
|
23 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
24 |
+
neck=None,
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=1024,
|
28 |
+
feat_channels=1024,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[2, 4, 8, 16, 32],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[16]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
# model training and testing settings
|
42 |
+
train_cfg=dict(
|
43 |
+
rpn=dict(
|
44 |
+
assigner=dict(
|
45 |
+
type='MaxIoUAssigner',
|
46 |
+
pos_iou_thr=0.7,
|
47 |
+
neg_iou_thr=0.3,
|
48 |
+
min_pos_iou=0.3,
|
49 |
+
ignore_iof_thr=-1),
|
50 |
+
sampler=dict(
|
51 |
+
type='RandomSampler',
|
52 |
+
num=256,
|
53 |
+
pos_fraction=0.5,
|
54 |
+
neg_pos_ub=-1,
|
55 |
+
add_gt_as_proposals=False),
|
56 |
+
allowed_border=-1,
|
57 |
+
pos_weight=-1,
|
58 |
+
debug=False)),
|
59 |
+
test_cfg=dict(
|
60 |
+
rpn=dict(
|
61 |
+
nms_pre=12000,
|
62 |
+
max_per_img=2000,
|
63 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
64 |
+
min_bbox_size=0)))
|
configs/_base_/models/rpn_r50_fpn.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='RPN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
num_outs=5),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=256,
|
28 |
+
feat_channels=256,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[8],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[4, 8, 16, 32, 64]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
# model training and testing settings
|
42 |
+
train_cfg=dict(
|
43 |
+
rpn=dict(
|
44 |
+
assigner=dict(
|
45 |
+
type='MaxIoUAssigner',
|
46 |
+
pos_iou_thr=0.7,
|
47 |
+
neg_iou_thr=0.3,
|
48 |
+
min_pos_iou=0.3,
|
49 |
+
ignore_iof_thr=-1),
|
50 |
+
sampler=dict(
|
51 |
+
type='RandomSampler',
|
52 |
+
num=256,
|
53 |
+
pos_fraction=0.5,
|
54 |
+
neg_pos_ub=-1,
|
55 |
+
add_gt_as_proposals=False),
|
56 |
+
allowed_border=-1,
|
57 |
+
pos_weight=-1,
|
58 |
+
debug=False)),
|
59 |
+
test_cfg=dict(
|
60 |
+
rpn=dict(
|
61 |
+
nms_pre=2000,
|
62 |
+
max_per_img=1000,
|
63 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
64 |
+
min_bbox_size=0)))
|
configs/_base_/models/ssd300.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
input_size = 300
|
3 |
+
model = dict(
|
4 |
+
type='SingleStageDetector',
|
5 |
+
data_preprocessor=dict(
|
6 |
+
type='DetDataPreprocessor',
|
7 |
+
mean=[123.675, 116.28, 103.53],
|
8 |
+
std=[1, 1, 1],
|
9 |
+
bgr_to_rgb=True,
|
10 |
+
pad_size_divisor=1),
|
11 |
+
backbone=dict(
|
12 |
+
type='SSDVGG',
|
13 |
+
depth=16,
|
14 |
+
with_last_pool=False,
|
15 |
+
ceil_mode=True,
|
16 |
+
out_indices=(3, 4),
|
17 |
+
out_feature_indices=(22, 34),
|
18 |
+
init_cfg=dict(
|
19 |
+
type='Pretrained', checkpoint='open-mmlab://vgg16_caffe')),
|
20 |
+
neck=dict(
|
21 |
+
type='SSDNeck',
|
22 |
+
in_channels=(512, 1024),
|
23 |
+
out_channels=(512, 1024, 512, 256, 256, 256),
|
24 |
+
level_strides=(2, 2, 1, 1),
|
25 |
+
level_paddings=(1, 1, 0, 0),
|
26 |
+
l2_norm_scale=20),
|
27 |
+
bbox_head=dict(
|
28 |
+
type='SSDHead',
|
29 |
+
in_channels=(512, 1024, 512, 256, 256, 256),
|
30 |
+
num_classes=80,
|
31 |
+
anchor_generator=dict(
|
32 |
+
type='SSDAnchorGenerator',
|
33 |
+
scale_major=False,
|
34 |
+
input_size=input_size,
|
35 |
+
basesize_ratio_range=(0.15, 0.9),
|
36 |
+
strides=[8, 16, 32, 64, 100, 300],
|
37 |
+
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
|
38 |
+
bbox_coder=dict(
|
39 |
+
type='DeltaXYWHBBoxCoder',
|
40 |
+
target_means=[.0, .0, .0, .0],
|
41 |
+
target_stds=[0.1, 0.1, 0.2, 0.2])),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(
|
44 |
+
assigner=dict(
|
45 |
+
type='MaxIoUAssigner',
|
46 |
+
pos_iou_thr=0.5,
|
47 |
+
neg_iou_thr=0.5,
|
48 |
+
min_pos_iou=0.,
|
49 |
+
ignore_iof_thr=-1,
|
50 |
+
gt_max_assign_all=False),
|
51 |
+
sampler=dict(type='PseudoSampler'),
|
52 |
+
smoothl1_beta=1.,
|
53 |
+
allowed_border=-1,
|
54 |
+
pos_weight=-1,
|
55 |
+
neg_pos_ratio=3,
|
56 |
+
debug=False),
|
57 |
+
test_cfg=dict(
|
58 |
+
nms_pre=1000,
|
59 |
+
nms=dict(type='nms', iou_threshold=0.45),
|
60 |
+
min_bbox_size=0,
|
61 |
+
score_thr=0.02,
|
62 |
+
max_per_img=200))
|
63 |
+
cudnn_benchmark = True
|
configs/_base_/schedules/schedule_1x.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# training schedule for 1x
|
2 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
|
3 |
+
val_cfg = dict(type='ValLoop')
|
4 |
+
test_cfg = dict(type='TestLoop')
|
5 |
+
|
6 |
+
# learning rate
|
7 |
+
param_scheduler = [
|
8 |
+
dict(
|
9 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
10 |
+
dict(
|
11 |
+
type='MultiStepLR',
|
12 |
+
begin=0,
|
13 |
+
end=12,
|
14 |
+
by_epoch=True,
|
15 |
+
milestones=[8, 11],
|
16 |
+
gamma=0.1)
|
17 |
+
]
|
18 |
+
|
19 |
+
# optimizer
|
20 |
+
optim_wrapper = dict(
|
21 |
+
type='OptimWrapper',
|
22 |
+
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
|
23 |
+
|
24 |
+
# Default setting for scaling LR automatically
|
25 |
+
# - `enable` means enable scaling LR automatically
|
26 |
+
# or not by default.
|
27 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
28 |
+
auto_scale_lr = dict(enable=False, base_batch_size=4)
|
configs/_base_/schedules/schedule_20e.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# training schedule for 20e
|
2 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
|
3 |
+
val_cfg = dict(type='ValLoop')
|
4 |
+
test_cfg = dict(type='TestLoop')
|
5 |
+
|
6 |
+
# learning rate
|
7 |
+
param_scheduler = [
|
8 |
+
dict(
|
9 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
10 |
+
dict(
|
11 |
+
type='MultiStepLR',
|
12 |
+
begin=0,
|
13 |
+
end=20,
|
14 |
+
by_epoch=True,
|
15 |
+
milestones=[16, 19],
|
16 |
+
gamma=0.1)
|
17 |
+
]
|
18 |
+
|
19 |
+
# optimizer
|
20 |
+
optim_wrapper = dict(
|
21 |
+
type='OptimWrapper',
|
22 |
+
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
|
23 |
+
|
24 |
+
# Default setting for scaling LR automatically
|
25 |
+
# - `enable` means enable scaling LR automatically
|
26 |
+
# or not by default.
|
27 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
28 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
configs/_base_/schedules/schedule_2x.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# training schedule for 2x
|
2 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1)
|
3 |
+
val_cfg = dict(type='ValLoop')
|
4 |
+
test_cfg = dict(type='TestLoop')
|
5 |
+
|
6 |
+
# learning rate
|
7 |
+
param_scheduler = [
|
8 |
+
dict(
|
9 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
10 |
+
dict(
|
11 |
+
type='MultiStepLR',
|
12 |
+
begin=0,
|
13 |
+
end=24,
|
14 |
+
by_epoch=True,
|
15 |
+
milestones=[16, 22],
|
16 |
+
gamma=0.1)
|
17 |
+
]
|
18 |
+
|
19 |
+
# optimizer
|
20 |
+
optim_wrapper = dict(
|
21 |
+
type='OptimWrapper',
|
22 |
+
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
|
23 |
+
|
24 |
+
# Default setting for scaling LR automatically
|
25 |
+
# - `enable` means enable scaling LR automatically
|
26 |
+
# or not by default.
|
27 |
+
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
|
28 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
configs/backup/albu_example/README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Albu Example
|
2 |
+
|
3 |
+
> [Albumentations: fast and flexible image augmentations](https://arxiv.org/abs/1809.06839)
|
4 |
+
|
5 |
+
<!-- [OTHERS] -->
|
6 |
+
|
7 |
+
## Abstract
|
8 |
+
|
9 |
+
Data augmentation is a commonly used technique for increasing both the size and the diversity of labeled training sets by leveraging input transformations that preserve output labels. In computer vision domain, image augmentations have become a common implicit regularization technique to combat overfitting in deep convolutional neural networks and are ubiquitously used to improve performance. While most deep learning frameworks implement basic image transformations, the list is typically limited to some variations and combinations of flipping, rotating, scaling, and cropping. Moreover, the image processing speed varies in existing tools for image augmentation. We present Albumentations, a fast and flexible library for image augmentations with many various image transform operations available, that is also an easy-to-use wrapper around other augmentation libraries. We provide examples of image augmentations for different computer vision tasks and show that Albumentations is faster than other commonly used image augmentation tools on the most of commonly used image transformations.
|
10 |
+
|
11 |
+
<div align=center>
|
12 |
+
<img src="https://user-images.githubusercontent.com/40661020/143870703-74f3ea3f-ae23-4035-9856-746bc3f88464.png" height="400" />
|
13 |
+
</div>
|
14 |
+
|
15 |
+
## Results and Models
|
16 |
+
|
17 |
+
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|
18 |
+
| :------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :-------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
19 |
+
| R-50 | pytorch | 1x | 4.4 | 16.6 | 38.0 | 34.5 | [config](mask-rcnn_r50_fpn_albu-1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208_225520.log.json) |
|
20 |
+
|
21 |
+
## Citation
|
22 |
+
|
23 |
+
```latex
|
24 |
+
@article{2018arXiv180906839B,
|
25 |
+
author = {A. Buslaev, A. Parinov, E. Khvedchenya, V.~I. Iglovikov and A.~A. Kalinin},
|
26 |
+
title = "{Albumentations: fast and flexible image augmentations}",
|
27 |
+
journal = {ArXiv e-prints},
|
28 |
+
eprint = {1809.06839},
|
29 |
+
year = 2018
|
30 |
+
}
|
31 |
+
```
|
configs/backup/albu_example/mask-rcnn_r50_fpn_albu-1x_coco.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py'
|
2 |
+
|
3 |
+
albu_train_transforms = [
|
4 |
+
dict(
|
5 |
+
type='ShiftScaleRotate',
|
6 |
+
shift_limit=0.0625,
|
7 |
+
scale_limit=0.0,
|
8 |
+
rotate_limit=0,
|
9 |
+
interpolation=1,
|
10 |
+
p=0.5),
|
11 |
+
dict(
|
12 |
+
type='RandomBrightnessContrast',
|
13 |
+
brightness_limit=[0.1, 0.3],
|
14 |
+
contrast_limit=[0.1, 0.3],
|
15 |
+
p=0.2),
|
16 |
+
dict(
|
17 |
+
type='OneOf',
|
18 |
+
transforms=[
|
19 |
+
dict(
|
20 |
+
type='RGBShift',
|
21 |
+
r_shift_limit=10,
|
22 |
+
g_shift_limit=10,
|
23 |
+
b_shift_limit=10,
|
24 |
+
p=1.0),
|
25 |
+
dict(
|
26 |
+
type='HueSaturationValue',
|
27 |
+
hue_shift_limit=20,
|
28 |
+
sat_shift_limit=30,
|
29 |
+
val_shift_limit=20,
|
30 |
+
p=1.0)
|
31 |
+
],
|
32 |
+
p=0.1),
|
33 |
+
dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
|
34 |
+
dict(type='ChannelShuffle', p=0.1),
|
35 |
+
dict(
|
36 |
+
type='OneOf',
|
37 |
+
transforms=[
|
38 |
+
dict(type='Blur', blur_limit=3, p=1.0),
|
39 |
+
dict(type='MedianBlur', blur_limit=3, p=1.0)
|
40 |
+
],
|
41 |
+
p=0.1),
|
42 |
+
]
|
43 |
+
train_pipeline = [
|
44 |
+
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
|
45 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
46 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
47 |
+
dict(
|
48 |
+
type='Albu',
|
49 |
+
transforms=albu_train_transforms,
|
50 |
+
bbox_params=dict(
|
51 |
+
type='BboxParams',
|
52 |
+
format='pascal_voc',
|
53 |
+
label_fields=['gt_bboxes_labels', 'gt_ignore_flags'],
|
54 |
+
min_visibility=0.0,
|
55 |
+
filter_lost_elements=True),
|
56 |
+
keymap={
|
57 |
+
'img': 'image',
|
58 |
+
'gt_masks': 'masks',
|
59 |
+
'gt_bboxes': 'bboxes'
|
60 |
+
},
|
61 |
+
skip_img_without_anno=True),
|
62 |
+
dict(type='RandomFlip', prob=0.5),
|
63 |
+
dict(type='PackDetInputs')
|
64 |
+
]
|
65 |
+
|
66 |
+
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
configs/backup/albu_example/metafile.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Models:
|
2 |
+
- Name: mask-rcnn_r50_fpn_albu-1x_coco
|
3 |
+
In Collection: Mask R-CNN
|
4 |
+
Config: mask-rcnn_r50_fpn_albu-1x_coco.py
|
5 |
+
Metadata:
|
6 |
+
Training Memory (GB): 4.4
|
7 |
+
Epochs: 12
|
8 |
+
Results:
|
9 |
+
- Task: Object Detection
|
10 |
+
Dataset: COCO
|
11 |
+
Metrics:
|
12 |
+
box AP: 38.0
|
13 |
+
- Task: Instance Segmentation
|
14 |
+
Dataset: COCO
|
15 |
+
Metrics:
|
16 |
+
mask AP: 34.5
|
17 |
+
Weights: https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth
|
configs/backup/atss/README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ATSS
|
2 |
+
|
3 |
+
> [Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection](https://arxiv.org/abs/1912.02424)
|
4 |
+
|
5 |
+
<!-- [ALGORITHM] -->
|
6 |
+
|
7 |
+
## Abstract
|
8 |
+
|
9 |
+
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve state-of-the-art detectors by a large margin to 50.7% AP without introducing any overhead.
|
10 |
+
|
11 |
+
<div align=center>
|
12 |
+
<img src="https://user-images.githubusercontent.com/40661020/143870776-c81168f5-e8b2-44ee-978b-509e4372c5c9.png"/>
|
13 |
+
</div>
|
14 |
+
|
15 |
+
## Results and Models
|
16 |
+
|
17 |
+
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|
18 |
+
| :------: | :-----: | :-----: | :------: | :------------: | :----: | :----------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
19 |
+
| R-50 | pytorch | 1x | 3.7 | 19.7 | 39.4 | [config](atss_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209_102539.log.json) |
|
20 |
+
| R-101 | pytorch | 1x | 5.6 | 12.3 | 41.5 | [config](atss_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.log.json) |
|
21 |
+
|
22 |
+
## Citation
|
23 |
+
|
24 |
+
```latex
|
25 |
+
@article{zhang2019bridging,
|
26 |
+
title = {Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection},
|
27 |
+
author = {Zhang, Shifeng and Chi, Cheng and Yao, Yongqiang and Lei, Zhen and Li, Stan Z.},
|
28 |
+
journal = {arXiv preprint arXiv:1912.02424},
|
29 |
+
year = {2019}
|
30 |
+
}
|
31 |
+
```
|
configs/backup/atss/atss_r101_fpn_1x_coco.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './atss_r50_fpn_1x_coco.py'
|
2 |
+
model = dict(
|
3 |
+
backbone=dict(
|
4 |
+
depth=101,
|
5 |
+
init_cfg=dict(type='Pretrained',
|
6 |
+
checkpoint='torchvision://resnet101')))
|
configs/backup/atss/atss_r101_fpn_8xb8-amp-lsj-200e_coco.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './atss_r50_fpn_8xb8-amp-lsj-200e_coco.py'
|
2 |
+
|
3 |
+
model = dict(
|
4 |
+
backbone=dict(
|
5 |
+
depth=101,
|
6 |
+
init_cfg=dict(type='Pretrained',
|
7 |
+
checkpoint='torchvision://resnet101')))
|
configs/backup/atss/atss_r18_fpn_8xb8-amp-lsj-200e_coco.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './atss_r50_fpn_8xb8-amp-lsj-200e_coco.py'
|
2 |
+
|
3 |
+
model = dict(
|
4 |
+
backbone=dict(
|
5 |
+
depth=18,
|
6 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
|
7 |
+
neck=dict(in_channels=[64, 128, 256, 512]))
|
configs/backup/atss/atss_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = [
|
2 |
+
'../_base_/datasets/coco_detection.py',
|
3 |
+
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
|
4 |
+
]
|
5 |
+
|
6 |
+
# model settings
|
7 |
+
model = dict(
|
8 |
+
type='ATSS',
|
9 |
+
data_preprocessor=dict(
|
10 |
+
type='DetDataPreprocessor',
|
11 |
+
mean=[123.675, 116.28, 103.53],
|
12 |
+
std=[58.395, 57.12, 57.375],
|
13 |
+
bgr_to_rgb=True,
|
14 |
+
pad_size_divisor=32),
|
15 |
+
backbone=dict(
|
16 |
+
type='ResNet',
|
17 |
+
depth=50,
|
18 |
+
num_stages=4,
|
19 |
+
out_indices=(0, 1, 2, 3),
|
20 |
+
frozen_stages=1,
|
21 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
22 |
+
norm_eval=True,
|
23 |
+
style='pytorch',
|
24 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
25 |
+
neck=dict(
|
26 |
+
type='FPN',
|
27 |
+
in_channels=[256, 512, 1024, 2048],
|
28 |
+
out_channels=256,
|
29 |
+
start_level=1,
|
30 |
+
add_extra_convs='on_output',
|
31 |
+
num_outs=5),
|
32 |
+
bbox_head=dict(
|
33 |
+
type='ATSSHead',
|
34 |
+
num_classes=80,
|
35 |
+
in_channels=256,
|
36 |
+
stacked_convs=4,
|
37 |
+
feat_channels=256,
|
38 |
+
anchor_generator=dict(
|
39 |
+
type='AnchorGenerator',
|
40 |
+
ratios=[1.0],
|
41 |
+
octave_base_scale=8,
|
42 |
+
scales_per_octave=1,
|
43 |
+
strides=[8, 16, 32, 64, 128]),
|
44 |
+
bbox_coder=dict(
|
45 |
+
type='DeltaXYWHBBoxCoder',
|
46 |
+
target_means=[.0, .0, .0, .0],
|
47 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
48 |
+
loss_cls=dict(
|
49 |
+
type='FocalLoss',
|
50 |
+
use_sigmoid=True,
|
51 |
+
gamma=2.0,
|
52 |
+
alpha=0.25,
|
53 |
+
loss_weight=1.0),
|
54 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
55 |
+
loss_centerness=dict(
|
56 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
|
57 |
+
# training and testing settings
|
58 |
+
train_cfg=dict(
|
59 |
+
assigner=dict(type='ATSSAssigner', topk=9),
|
60 |
+
allowed_border=-1,
|
61 |
+
pos_weight=-1,
|
62 |
+
debug=False),
|
63 |
+
test_cfg=dict(
|
64 |
+
nms_pre=1000,
|
65 |
+
min_bbox_size=0,
|
66 |
+
score_thr=0.05,
|
67 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
68 |
+
max_per_img=100))
|
69 |
+
# optimizer
|
70 |
+
optim_wrapper = dict(
|
71 |
+
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
|
configs/backup/atss/atss_r50_fpn_8xb8-amp-lsj-200e_coco.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = '../common/lsj-200e_coco-detection.py'
|
2 |
+
|
3 |
+
image_size = (1024, 1024)
|
4 |
+
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)]
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type='ATSS',
|
8 |
+
data_preprocessor=dict(
|
9 |
+
type='DetDataPreprocessor',
|
10 |
+
mean=[123.675, 116.28, 103.53],
|
11 |
+
std=[58.395, 57.12, 57.375],
|
12 |
+
bgr_to_rgb=True,
|
13 |
+
pad_size_divisor=32,
|
14 |
+
batch_augments=batch_augments),
|
15 |
+
backbone=dict(
|
16 |
+
type='ResNet',
|
17 |
+
depth=50,
|
18 |
+
num_stages=4,
|
19 |
+
out_indices=(0, 1, 2, 3),
|
20 |
+
frozen_stages=1,
|
21 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
22 |
+
norm_eval=True,
|
23 |
+
style='pytorch',
|
24 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
25 |
+
neck=dict(
|
26 |
+
type='FPN',
|
27 |
+
in_channels=[256, 512, 1024, 2048],
|
28 |
+
out_channels=256,
|
29 |
+
start_level=1,
|
30 |
+
add_extra_convs='on_output',
|
31 |
+
num_outs=5),
|
32 |
+
bbox_head=dict(
|
33 |
+
type='ATSSHead',
|
34 |
+
num_classes=80,
|
35 |
+
in_channels=256,
|
36 |
+
stacked_convs=4,
|
37 |
+
feat_channels=256,
|
38 |
+
anchor_generator=dict(
|
39 |
+
type='AnchorGenerator',
|
40 |
+
ratios=[1.0],
|
41 |
+
octave_base_scale=8,
|
42 |
+
scales_per_octave=1,
|
43 |
+
strides=[8, 16, 32, 64, 128]),
|
44 |
+
bbox_coder=dict(
|
45 |
+
type='DeltaXYWHBBoxCoder',
|
46 |
+
target_means=[.0, .0, .0, .0],
|
47 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
48 |
+
loss_cls=dict(
|
49 |
+
type='FocalLoss',
|
50 |
+
use_sigmoid=True,
|
51 |
+
gamma=2.0,
|
52 |
+
alpha=0.25,
|
53 |
+
loss_weight=1.0),
|
54 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
|
55 |
+
loss_centerness=dict(
|
56 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
|
57 |
+
# training and testing settings
|
58 |
+
train_cfg=dict(
|
59 |
+
assigner=dict(type='ATSSAssigner', topk=9),
|
60 |
+
allowed_border=-1,
|
61 |
+
pos_weight=-1,
|
62 |
+
debug=False),
|
63 |
+
test_cfg=dict(
|
64 |
+
nms_pre=1000,
|
65 |
+
min_bbox_size=0,
|
66 |
+
score_thr=0.05,
|
67 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
68 |
+
max_per_img=100))
|
69 |
+
|
70 |
+
train_dataloader = dict(batch_size=8, num_workers=4)
|
71 |
+
|
72 |
+
# Enable automatic-mixed-precision training with AmpOptimWrapper.
|
73 |
+
optim_wrapper = dict(
|
74 |
+
type='AmpOptimWrapper',
|
75 |
+
optimizer=dict(
|
76 |
+
type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004))
|
77 |
+
|
78 |
+
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
79 |
+
# USER SHOULD NOT CHANGE ITS VALUES.
|
80 |
+
# base_batch_size = (8 GPUs) x (8 samples per GPU)
|
81 |
+
auto_scale_lr = dict(base_batch_size=64)
|
configs/backup/atss/metafile.yml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Collections:
|
2 |
+
- Name: ATSS
|
3 |
+
Metadata:
|
4 |
+
Training Data: COCO
|
5 |
+
Training Techniques:
|
6 |
+
- SGD with Momentum
|
7 |
+
- Weight Decay
|
8 |
+
Training Resources: 8x V100 GPUs
|
9 |
+
Architecture:
|
10 |
+
- ATSS
|
11 |
+
- FPN
|
12 |
+
- ResNet
|
13 |
+
Paper:
|
14 |
+
URL: https://arxiv.org/abs/1912.02424
|
15 |
+
Title: 'Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection'
|
16 |
+
README: configs/atss/README.md
|
17 |
+
Code:
|
18 |
+
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/atss.py#L6
|
19 |
+
Version: v2.0.0
|
20 |
+
|
21 |
+
Models:
|
22 |
+
- Name: atss_r50_fpn_1x_coco
|
23 |
+
In Collection: ATSS
|
24 |
+
Config: configs/atss/atss_r50_fpn_1x_coco.py
|
25 |
+
Metadata:
|
26 |
+
Training Memory (GB): 3.7
|
27 |
+
inference time (ms/im):
|
28 |
+
- value: 50.76
|
29 |
+
hardware: V100
|
30 |
+
backend: PyTorch
|
31 |
+
batch size: 1
|
32 |
+
mode: FP32
|
33 |
+
resolution: (800, 1333)
|
34 |
+
Epochs: 12
|
35 |
+
Results:
|
36 |
+
- Task: Object Detection
|
37 |
+
Dataset: COCO
|
38 |
+
Metrics:
|
39 |
+
box AP: 39.4
|
40 |
+
Weights: https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r50_fpn_1x_coco/atss_r50_fpn_1x_coco_20200209-985f7bd0.pth
|
41 |
+
|
42 |
+
- Name: atss_r101_fpn_1x_coco
|
43 |
+
In Collection: ATSS
|
44 |
+
Config: configs/atss/atss_r101_fpn_1x_coco.py
|
45 |
+
Metadata:
|
46 |
+
Training Memory (GB): 5.6
|
47 |
+
inference time (ms/im):
|
48 |
+
- value: 81.3
|
49 |
+
hardware: V100
|
50 |
+
backend: PyTorch
|
51 |
+
batch size: 1
|
52 |
+
mode: FP32
|
53 |
+
resolution: (800, 1333)
|
54 |
+
Epochs: 12
|
55 |
+
Results:
|
56 |
+
- Task: Object Detection
|
57 |
+
Dataset: COCO
|
58 |
+
Metrics:
|
59 |
+
box AP: 41.5
|
60 |
+
Weights: https://download.openmmlab.com/mmdetection/v2.0/atss/atss_r101_fpn_1x_coco/atss_r101_fpn_1x_20200825-dfcadd6f.pth
|
configs/backup/autoassign/README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AutoAssign
|
2 |
+
|
3 |
+
> [AutoAssign: Differentiable Label Assignment for Dense Object Detection](https://arxiv.org/abs/2007.03496)
|
4 |
+
|
5 |
+
<!-- [ALGORITHM] -->
|
6 |
+
|
7 |
+
## Abstract
|
8 |
+
|
9 |
+
Determining positive/negative samples for object detection is known as label assignment. Here we present an anchor-free detector named AutoAssign. It requires little human knowledge and achieves appearance-aware through a fully differentiable weighting mechanism. During training, to both satisfy the prior distribution of data and adapt to category characteristics, we present Center Weighting to adjust the category-specific prior distributions. To adapt to object appearances, Confidence Weighting is proposed to adjust the specific assign strategy of each instance. The two weighting modules are then combined to generate positive and negative weights to adjust each location's confidence. Extensive experiments on the MS COCO show that our method steadily surpasses other best sampling strategies by large margins with various backbones. Moreover, our best model achieves 52.1% AP, outperforming all existing one-stage detectors. Besides, experiments on other datasets, e.g., PASCAL VOC, Objects365, and WiderFace, demonstrate the broad applicability of AutoAssign.
|
10 |
+
|
11 |
+
<div align=center>
|
12 |
+
<img src="https://user-images.githubusercontent.com/40661020/143870875-33567e44-0584-4470-9a90-0df0fb6c1fe2.png"/>
|
13 |
+
</div>
|
14 |
+
|
15 |
+
## Results and Models
|
16 |
+
|
17 |
+
| Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download |
|
18 |
+
| :------: | :---: | :-----: | :------: | :----: | :---------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
19 |
+
| R-50 | caffe | 1x | 4.08 | 40.4 | [config](autoassign_r50-caffe_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.log.json) |
|
20 |
+
|
21 |
+
**Note**:
|
22 |
+
|
23 |
+
1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.3 mAP. mAP 40.3 ~ 40.6 is acceptable. Such fluctuation can also be found in the original implementation.
|
24 |
+
2. You can get a more stable results ~ mAP 40.6 with a schedule total 13 epoch, and learning rate is divided by 10 at 10th and 13th epoch.
|
25 |
+
|
26 |
+
## Citation
|
27 |
+
|
28 |
+
```latex
|
29 |
+
@article{zhu2020autoassign,
|
30 |
+
title={AutoAssign: Differentiable Label Assignment for Dense Object Detection},
|
31 |
+
author={Zhu, Benjin and Wang, Jianfeng and Jiang, Zhengkai and Zong, Fuhang and Liu, Songtao and Li, Zeming and Sun, Jian},
|
32 |
+
journal={arXiv preprint arXiv:2007.03496},
|
33 |
+
year={2020}
|
34 |
+
}
|
35 |
+
```
|
configs/backup/autoassign/autoassign_r50-caffe_fpn_1x_coco.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# We follow the original implementation which
|
2 |
+
# adopts the Caffe pre-trained backbone.
|
3 |
+
_base_ = [
|
4 |
+
'../_base_/datasets/coco_detection.py',
|
5 |
+
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
|
6 |
+
]
|
7 |
+
# model settings
|
8 |
+
model = dict(
|
9 |
+
type='AutoAssign',
|
10 |
+
data_preprocessor=dict(
|
11 |
+
type='DetDataPreprocessor',
|
12 |
+
mean=[102.9801, 115.9465, 122.7717],
|
13 |
+
std=[1.0, 1.0, 1.0],
|
14 |
+
bgr_to_rgb=False,
|
15 |
+
pad_size_divisor=32),
|
16 |
+
backbone=dict(
|
17 |
+
type='ResNet',
|
18 |
+
depth=50,
|
19 |
+
num_stages=4,
|
20 |
+
out_indices=(0, 1, 2, 3),
|
21 |
+
frozen_stages=1,
|
22 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
23 |
+
norm_eval=True,
|
24 |
+
style='caffe',
|
25 |
+
init_cfg=dict(
|
26 |
+
type='Pretrained',
|
27 |
+
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
|
28 |
+
neck=dict(
|
29 |
+
type='FPN',
|
30 |
+
in_channels=[256, 512, 1024, 2048],
|
31 |
+
out_channels=256,
|
32 |
+
start_level=1,
|
33 |
+
add_extra_convs=True,
|
34 |
+
num_outs=5,
|
35 |
+
relu_before_extra_convs=True,
|
36 |
+
init_cfg=dict(type='Caffe2Xavier', layer='Conv2d')),
|
37 |
+
bbox_head=dict(
|
38 |
+
type='AutoAssignHead',
|
39 |
+
num_classes=80,
|
40 |
+
in_channels=256,
|
41 |
+
stacked_convs=4,
|
42 |
+
feat_channels=256,
|
43 |
+
strides=[8, 16, 32, 64, 128],
|
44 |
+
loss_bbox=dict(type='GIoULoss', loss_weight=5.0)),
|
45 |
+
train_cfg=None,
|
46 |
+
test_cfg=dict(
|
47 |
+
nms_pre=1000,
|
48 |
+
min_bbox_size=0,
|
49 |
+
score_thr=0.05,
|
50 |
+
nms=dict(type='nms', iou_threshold=0.6),
|
51 |
+
max_per_img=100))
|
52 |
+
|
53 |
+
# learning rate
|
54 |
+
param_scheduler = [
|
55 |
+
dict(
|
56 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
57 |
+
end=1000),
|
58 |
+
dict(
|
59 |
+
type='MultiStepLR',
|
60 |
+
begin=0,
|
61 |
+
end=12,
|
62 |
+
by_epoch=True,
|
63 |
+
milestones=[8, 11],
|
64 |
+
gamma=0.1)
|
65 |
+
]
|
66 |
+
|
67 |
+
# optimizer
|
68 |
+
optim_wrapper = dict(
|
69 |
+
optimizer=dict(lr=0.01), paramwise_cfg=dict(norm_decay_mult=0.))
|