# Copyright (c) OpenMMLab. All rights reserved. import argparse import tempfile from functools import partial from pathlib import Path import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import numpy as np import torch from mmengine.config import Config, DictAction from mmengine.logging import MMLogger from mmengine.model import revert_sync_batchnorm from mmengine.registry import init_default_scope from mmengine.runner import Runner from mmdet.registry import MODELS try: from mmengine.analysis import get_model_complexity_info from mmengine.analysis.print_helper import _format_size except ImportError: raise ImportError('Please upgrade mmengine >= 0.6.0') def parse_args(): parser = argparse.ArgumentParser(description='Get a detector flops') parser.add_argument('--config',default='./configs/specdetr_sb-2s-100e_hsi.py', help='train config file path') parser.add_argument( '--num-images', type=int, default=1, help='num images of calculate model flops') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def inference(args, logger): if str(torch.__version__) < '1.12': logger.warning( 'Some config files, such as configs/yolact and configs/detectors,' 'may have compatibility issues with torch.jit when torch<1.12. ' 'If you want to calculate flops for these models, ' 'please make sure your pytorch version is >=1.12.') config_name = Path(args.config) if not config_name.exists(): logger.error(f'{config_name} not found.') cfg = Config.fromfile(args.config) cfg.val_dataloader.batch_size = 1 cfg.work_dir = tempfile.TemporaryDirectory().name if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) init_default_scope(cfg.get('default_scope', 'mmdet')) # TODO: The following usage is temporary and not safe # use hard code to convert mmSyncBN to SyncBN. This is a known # bug in mmengine, mmSyncBN requires a distributed environment, # this question involves models like configs/strong_baselines if hasattr(cfg, 'head_norm_cfg'): cfg['head_norm_cfg'] = dict(type='SyncBN', requires_grad=True) cfg['model']['roi_head']['bbox_head']['norm_cfg'] = dict( type='SyncBN', requires_grad=True) cfg['model']['roi_head']['mask_head']['norm_cfg'] = dict( type='SyncBN', requires_grad=True) result = {} avg_flops = [] data_loader = Runner.build_dataloader(cfg.val_dataloader) model = MODELS.build(cfg.model) if torch.cuda.is_available(): model = model.cuda() model = revert_sync_batchnorm(model) model.eval() _forward = model.forward for idx, data_batch in enumerate(data_loader): if idx == args.num_images: break data = model.data_preprocessor(data_batch) result['ori_shape'] = data['data_samples'][0].ori_shape result['pad_shape'] = data['data_samples'][0].pad_shape if hasattr(data['data_samples'][0], 'batch_input_shape'): result['pad_shape'] = data['data_samples'][0].batch_input_shape model.forward = partial(_forward, data_samples=data['data_samples']) outputs = get_model_complexity_info( model, None, inputs=data['inputs'], show_table=False, show_arch=False) avg_flops.append(outputs['flops']) params = outputs['params'] result['compute_type'] = 'dataloader: load a picture from the dataset' del data_loader mean_flops = _format_size(int(np.average(avg_flops))) params = _format_size(params) result['flops'] = mean_flops result['params'] = params return result def main(): args = parse_args() logger = MMLogger.get_instance(name='MMLogger') result = inference(args, logger) split_line = '=' * 30 ori_shape = result['ori_shape'] pad_shape = result['pad_shape'] flops = result['flops'] params = result['params'] compute_type = result['compute_type'] if pad_shape != ori_shape: print(f'{split_line}\nUse size divisor set input shape ' f'from {ori_shape} to {pad_shape}') print(f'{split_line}\nCompute type: {compute_type}\n' f'Input shape: {pad_shape}\nFlops: {flops}\n' f'Params: {params}\n{split_line}') print('!!!Please be cautious if you use the results in papers. ' 'You may need to check if all ops are supported and verify ' 'that the flops computation is correct.') if __name__ == '__main__': main()