|
|
|
dataset_type = 'VOCDataset' |
|
data_root = 'data/VOCdevkit/' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict(type='Resize', scale=(1000, 600), keep_ratio=True), |
|
dict(type='RandomFlip', prob=0.5), |
|
dict(type='PackDetInputs') |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='Resize', scale=(1000, 600), keep_ratio=True), |
|
|
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PackDetInputs', |
|
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', |
|
'scale_factor')) |
|
] |
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
batch_sampler=dict(type='AspectRatioBatchSampler'), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=3, |
|
dataset=dict( |
|
type='ConcatDataset', |
|
|
|
|
|
|
|
ignore_keys=['dataset_type'], |
|
datasets=[ |
|
dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='VOC2007/ImageSets/Main/trainval.txt', |
|
data_prefix=dict(sub_data_root='VOC2007/'), |
|
filter_cfg=dict( |
|
filter_empty_gt=True, min_size=32, bbox_min_size=32), |
|
pipeline=train_pipeline, |
|
backend_args=backend_args), |
|
dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='VOC2012/ImageSets/Main/trainval.txt', |
|
data_prefix=dict(sub_data_root='VOC2012/'), |
|
filter_cfg=dict( |
|
filter_empty_gt=True, min_size=32, bbox_min_size=32), |
|
pipeline=train_pipeline, |
|
backend_args=backend_args) |
|
]))) |
|
|
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=2, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='VOC2007/ImageSets/Main/test.txt', |
|
data_prefix=dict(sub_data_root='VOC2007/'), |
|
test_mode=True, |
|
pipeline=test_pipeline, |
|
backend_args=backend_args)) |
|
test_dataloader = val_dataloader |
|
|
|
|
|
|
|
val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points') |
|
test_evaluator = val_evaluator |
|
|