File size: 3,434 Bytes
e8f2571 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# dataset settings
dataset_type = 'VOCDataset'
data_root = 'data/VOCdevkit/'
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically Infer from prefix (not support LMDB and Memcache yet)
# data_root = 's3://openmmlab/datasets/detection/segmentation/VOCdevkit/'
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/segmentation/',
# 'data/': 's3://openmmlab/datasets/segmentation/'
# }))
backend_args = None
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1000, 600), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='Resize', scale=(1000, 600), keep_ratio=True),
# avoid bboxes being resized
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=2,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type='ConcatDataset',
# VOCDataset will add different `dataset_type` in dataset.metainfo,
# which will get error if using ConcatDataset. Adding
# `ignore_keys` can avoid this error.
ignore_keys=['dataset_type'],
datasets=[
dict(
type=dataset_type,
data_root=data_root,
ann_file='VOC2007/ImageSets/Main/trainval.txt',
data_prefix=dict(sub_data_root='VOC2007/'),
filter_cfg=dict(
filter_empty_gt=True, min_size=32, bbox_min_size=32),
pipeline=train_pipeline,
backend_args=backend_args),
dict(
type=dataset_type,
data_root=data_root,
ann_file='VOC2012/ImageSets/Main/trainval.txt',
data_prefix=dict(sub_data_root='VOC2012/'),
filter_cfg=dict(
filter_empty_gt=True, min_size=32, bbox_min_size=32),
pipeline=train_pipeline,
backend_args=backend_args)
])))
val_dataloader = dict(
batch_size=1,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='VOC2007/ImageSets/Main/test.txt',
data_prefix=dict(sub_data_root='VOC2007/'),
test_mode=True,
pipeline=test_pipeline,
backend_args=backend_args))
test_dataloader = val_dataloader
# Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL
# VOC2012 defaults to use 'area'.
val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points')
test_evaluator = val_evaluator
|