File size: 2,075 Bytes
d6a4af5
a0ad636
 
 
 
f31fa73
d6a4af5
a3d4021
 
 
d6a4af5
 
 
c209aa4
a0ad636
 
f31fa73
a0ad636
 
 
 
 
 
 
f31fa73
a0ad636
406e834
 
 
f31fa73
 
 
 
406e834
f31fa73
 
 
 
0404a20
 
f31fa73
 
a0ad636
0404a20
f31fa73
 
406e834
f31fa73
0404a20
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
from pydantic import BaseModel

# Set writable cache directory inside the container
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home'

# Ensure the directory exists
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)

# Define base model and adapter model
base_model_name = "facebook/opt-2.7b"
adapter_name = "mynuddin/chatbot"  # Adapter model path or name

# Load base model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16)

# Load PEFT adapter
model = PeftModel.from_pretrained(base_model, adapter_name)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")  # Use GPU if available
model.eval()

app = FastAPI()

# Define Pydantic model for input
class PromptInput(BaseModel):
    prompt: str

@app.post("/generate")
def generate_text(input: PromptInput):
    prompt = input.prompt  # Access prompt from the request body

    # Format the prompt with specific style for your fine-tuned model
    input_text = f"### Prompt: {prompt}\n### Completion:"
    inputs = tokenizer(input_text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")

    # Generate the output
    with torch.no_grad():
        output = model.generate(**inputs, max_length=128, do_sample=False, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
    
    # Decode the output and remove special tokens
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

    # Extract the query part from the generated output
    if "### Completion:" in generated_text:
        query_output = generated_text.split("### Completion:")[1].strip()
    else:
        query_output = generated_text.replace(input_text, "").strip()  # Fallback if the structure is not as expected

    return {"generated_query": query_output}