Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from fastapi import FastAPI
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
import torch
|
|
|
6 |
|
7 |
# Set writable cache directory inside the container
|
8 |
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
|
@@ -13,7 +14,7 @@ os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
|
|
13 |
|
14 |
# Define base model and adapter model
|
15 |
base_model_name = "facebook/opt-2.7b"
|
16 |
-
adapter_name = "mynuddin/chatbot"
|
17 |
|
18 |
# Load base model and tokenizer
|
19 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
@@ -21,15 +22,27 @@ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=t
|
|
21 |
|
22 |
# Load PEFT adapter
|
23 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
24 |
-
model = model.to("cpu") #
|
25 |
model.eval()
|
26 |
|
27 |
app = FastAPI()
|
28 |
|
|
|
|
|
|
|
|
|
29 |
@app.post("/generate")
|
30 |
-
def generate_text(
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
with torch.no_grad():
|
33 |
output = model.generate(**inputs, max_length=128)
|
|
|
|
|
34 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
-
|
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from peft import PeftModel
|
5 |
import torch
|
6 |
+
from pydantic import BaseModel
|
7 |
|
8 |
# Set writable cache directory inside the container
|
9 |
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
|
|
|
14 |
|
15 |
# Define base model and adapter model
|
16 |
base_model_name = "facebook/opt-2.7b"
|
17 |
+
adapter_name = "mynuddin/chatbot" # Adapter model path or name
|
18 |
|
19 |
# Load base model and tokenizer
|
20 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
|
|
22 |
|
23 |
# Load PEFT adapter
|
24 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
25 |
+
model = model.to("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
|
26 |
model.eval()
|
27 |
|
28 |
app = FastAPI()
|
29 |
|
30 |
+
# Define Pydantic model for input
|
31 |
+
class PromptInput(BaseModel):
|
32 |
+
prompt: str
|
33 |
+
|
34 |
@app.post("/generate")
|
35 |
+
def generate_text(input: PromptInput):
|
36 |
+
prompt = input.prompt # Access prompt from the request body
|
37 |
+
|
38 |
+
# Format the prompt with specific style for your fine-tuned model
|
39 |
+
inputs = tokenizer(f"### Prompt: {prompt}\n### Completion:", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
|
41 |
+
# Generate the output
|
42 |
with torch.no_grad():
|
43 |
output = model.generate(**inputs, max_length=128)
|
44 |
+
|
45 |
+
# Decode the output and remove special tokens
|
46 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
+
|
48 |
+
return {"generated_query": generated_text}
|