Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,35 @@
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
|
3 |
# Set writable cache directory inside the container
|
4 |
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
|
5 |
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home'
|
6 |
|
7 |
-
from fastapi import FastAPI
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
-
|
10 |
# Ensure the directory exists
|
11 |
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
app = FastAPI()
|
19 |
|
20 |
@app.post("/generate")
|
21 |
def generate_text(prompt: str):
|
22 |
inputs = tokenizer(prompt, return_tensors="pt")
|
23 |
-
|
|
|
24 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
-
return {"generated_query": generated_text}
|
|
|
1 |
import os
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel
|
5 |
+
import torch
|
6 |
|
7 |
# Set writable cache directory inside the container
|
8 |
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
|
9 |
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home'
|
10 |
|
|
|
|
|
|
|
11 |
# Ensure the directory exists
|
12 |
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
|
13 |
|
14 |
+
# Define base model and adapter model
|
15 |
+
base_model_name = "facebook/opt-2.7b"
|
16 |
+
adapter_name = "mynuddin/chatbot"
|
17 |
+
|
18 |
+
# Load base model and tokenizer
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16)
|
21 |
+
|
22 |
+
# Load PEFT adapter
|
23 |
+
model = PeftModel.from_pretrained(base_model, adapter_name)
|
24 |
+
model = model.to("cpu") # Change to "cuda" if running on GPU
|
25 |
+
model.eval()
|
26 |
|
27 |
app = FastAPI()
|
28 |
|
29 |
@app.post("/generate")
|
30 |
def generate_text(prompt: str):
|
31 |
inputs = tokenizer(prompt, return_tensors="pt")
|
32 |
+
with torch.no_grad():
|
33 |
+
output = model.generate(**inputs, max_length=128)
|
34 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
+
return {"generated_query": generated_text}
|