Spaces:
Sleeping
Sleeping
File size: 1,656 Bytes
d6a4af5 a0ad636 f31fa73 d6a4af5 a3d4021 d6a4af5 c209aa4 a0ad636 f31fa73 a0ad636 f31fa73 a0ad636 406e834 f31fa73 406e834 f31fa73 a0ad636 f31fa73 406e834 f31fa73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import os
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
from pydantic import BaseModel
# Set writable cache directory inside the container
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home'
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home'
# Ensure the directory exists
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True)
# Define base model and adapter model
base_model_name = "facebook/opt-2.7b"
adapter_name = "mynuddin/chatbot" # Adapter model path or name
# Load base model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16)
# Load PEFT adapter
model = PeftModel.from_pretrained(base_model, adapter_name)
model = model.to("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available
model.eval()
app = FastAPI()
# Define Pydantic model for input
class PromptInput(BaseModel):
prompt: str
@app.post("/generate")
def generate_text(input: PromptInput):
prompt = input.prompt # Access prompt from the request body
# Format the prompt with specific style for your fine-tuned model
inputs = tokenizer(f"### Prompt: {prompt}\n### Completion:", return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
# Generate the output
with torch.no_grad():
output = model.generate(**inputs, max_length=128)
# Decode the output and remove special tokens
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return {"generated_query": generated_text}
|