Spaces:
Sleeping
Sleeping
File size: 18,604 Bytes
f06b197 b27a850 3ca3b8c 7f36089 3ca3b8c f06b197 3ca3b8c f06b197 b27a850 3ca3b8c 7f36089 3ca3b8c b27a850 3ca3b8c b27a850 3ca3b8c cedd7b9 b27a850 3ca3b8c b27a850 3ca3b8c cedd7b9 3ca3b8c f06b197 3ca3b8c cedd7b9 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c f06b197 cedd7b9 3ca3b8c cedd7b9 3ca3b8c cedd7b9 f06b197 3ca3b8c b27a850 3ca3b8c cedd7b9 3ca3b8c b27a850 f06b197 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c c2b521a 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c cedd7b9 3ca3b8c cedd7b9 3ca3b8c cedd7b9 3ca3b8c cedd7b9 f06b197 3ca3b8c f06b197 cedd7b9 3ca3b8c cedd7b9 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c c2b521a f06b197 3ca3b8c f06b197 3ca3b8c f06b197 3ca3b8c 7f36089 3ca3b8c f06b197 3ca3b8c f06b197 b27a850 3ca3b8c b27a850 3ca3b8c b27a850 3ca3b8c b27a850 3ca3b8c b27a850 f06b197 b27a850 e73b223 3ca3b8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import time
import threading
import queue
import multiprocessing
from pathlib import Path
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import numpy as np
# Set up environment variables for CPU optimization
os.environ["OMP_NUM_THREADS"] = str(max(1, multiprocessing.cpu_count() - 1)) # Optimal OpenMP threads
os.environ["MKL_NUM_THREADS"] = str(max(1, multiprocessing.cpu_count() - 1)) # Optimal MKL threads
os.environ["LLAMA_AVX"] = "1"
os.environ["LLAMA_AVX2"] = "1"
os.environ["LLAMA_F16"] = "1"
# Cache directories
CACHE_DIR = Path.home() / ".cache" / "fast_translate"
MODEL_CACHE = CACHE_DIR / "models"
QUANTIZED_CACHE = CACHE_DIR / "quantized"
os.makedirs(MODEL_CACHE, exist_ok=True)
os.makedirs(QUANTIZED_CACHE, exist_ok=True)
# Check if we're running on CPU
has_gpu = torch.cuda.is_available()
gpu_name = torch.cuda.get_device_name(0) if has_gpu else "No GPU"
print(f"GPU available: {has_gpu} - {gpu_name}")
# Configure CPU settings
cpu_count = multiprocessing.cpu_count()
optimal_threads = max(4, cpu_count - 1) # Leave one core free
print(f"Using {optimal_threads} of {cpu_count} CPU cores")
# Download model files
def get_model_path(repo_id, filename):
print(f"Obtaining {filename}...")
# Download to our custom cache location
return hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=MODEL_CACHE)
# Function to quantize model to int4 or int8
def quantize_model(input_model_path, output_model_path, quantization_type="q4_0"):
"""Quantize model to lower precision for faster inference on CPU"""
try:
from llama_cpp import llama_model_quantize
# Check if quantized model already exists
if os.path.exists(output_model_path):
print(f"Using existing quantized model: {output_model_path}")
return output_model_path
print(f"Quantizing model to {quantization_type}...")
start_time = time.time()
# Quantize using llama-cpp-python built-in quantization
llama_model_quantize(
input_model_path,
output_model_path,
quantization_type
)
print(f"Quantization completed in {time.time() - start_time:.2f}s")
return output_model_path
except Exception as e:
print(f"Quantization failed: {e}, using original model")
return input_model_path
# Download models
base_model_path = get_model_path(
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
"articulate-11-expspanish-base-merged-q8_0.gguf"
)
adapter_path = get_model_path(
"johnpaulbin/articulate-V1-Q8_0-GGUF",
"articulate-V1-q8_0.gguf"
)
# Quantize models (creates int4 versions for faster CPU inference)
quantized_base_path = str(QUANTIZED_CACHE / "articulate-base-q4_0.gguf")
quantized_adapter_path = str(QUANTIZED_CACHE / "articulate-adapter-q4_0.gguf")
base_model_path = quantize_model(base_model_path, quantized_base_path, "q4_0")
adapter_path = quantize_model(adapter_path, quantized_adapter_path, "q4_0")
# Import after setting environment variables
from llama_cpp import Llama
# Translation cache
translation_cache = {}
MAX_CACHE_SIZE = 1000
# Model worker with batching support
class ModelWorker:
def __init__(self):
self.model = None
self.request_queue = queue.Queue()
self.response_queue = queue.Queue()
self.batch_queue = []
self.batch_event = threading.Event()
self.batch_size = 4 # Process up to 4 requests at once
self.batch_timeout = 0.1 # Wait 100ms max to collect batch
self.worker_thread = threading.Thread(target=self._worker_loop, daemon=True)
self.batch_thread = threading.Thread(target=self._batch_loop, daemon=True)
self.worker_thread.start()
self.batch_thread.start()
def _batch_loop(self):
"""Collect requests into batches for more efficient processing"""
while True:
try:
# Get a request
request = self.request_queue.get()
if request is None:
break
# Add to batch
self.batch_queue.append(request)
# Try to collect more requests for the batch
batch_start = time.time()
while (len(self.batch_queue) < self.batch_size and
time.time() - batch_start < self.batch_timeout):
try:
req = self.request_queue.get_nowait()
if req is None:
break
self.batch_queue.append(req)
except queue.Empty:
time.sleep(0.01)
# Signal worker to process the batch
current_batch = self.batch_queue.copy()
self.batch_queue = []
for req in current_batch:
self._process_request(req)
except Exception as e:
print(f"Error in batch thread: {e}")
def _worker_loop(self):
"""Initialize model and process requests"""
try:
# Initialize model with optimized settings
print("Initializing model in background thread...")
start_time = time.time()
# Create model context with very optimized settings for CPU
self.model = Llama(
model_path=base_model_path,
lora_path=adapter_path,
n_ctx=256, # Smaller context for speed
n_threads=optimal_threads, # Use all but one CPU core
n_batch=512, # Smaller batch for CPU
use_mmap=True, # Memory mapping (more efficient)
n_gpu_layers=0, # Force CPU only
seed=42, # Consistent results
rope_freq_base=10000, # Default RoPE settings
rope_freq_scale=1.0,
verbose=False # Reduce overhead
)
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# Pre-warm the model with common phrases by running a simple inference
print("Pre-warming model...")
self.model.create_completion("[ENGLISH]hello[SPANISH]", max_tokens=8)
print("Model ready for translation")
except Exception as e:
print(f"Failed to initialize model: {e}")
def _process_request(self, request):
"""Process a single translation request"""
try:
direction, text, callback_id = request
result = self._process_translation(direction, text)
self.response_queue.put((callback_id, result))
except Exception as e:
print(f"Error processing request: {e}")
self.response_queue.put((callback_id, f"Error: {str(e)}"))
def _process_translation(self, direction, text):
"""Translate text with optimized settings"""
if not text or not text.strip():
return ""
# Check cache first for faster response
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
print("Cache hit!")
return translation_cache[cache_key]
# Start timing for performance tracking
start_time = time.time()
# Map language directions
lang_map = {
"English to Spanish": ("ENGLISH", "SPANISH"),
"Spanish to English": ("SPANISH", "ENGLISH"),
"Korean to English": ("KOREAN", "ENGLISH"),
"English to Korean": ("ENGLISH", "KOREAN")
}
if direction not in lang_map:
return "Invalid direction"
source_lang, target_lang = lang_map[direction]
# Efficient prompt format
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]"
# Estimate appropriate token length based on input
input_tokens = min(100, max(10, len(text.split())))
max_tokens = min(100, max(25, int(input_tokens * 1.3)))
# Generate translation with aggressively optimized settings for speed
response = self.model.create_completion(
prompt,
max_tokens=max_tokens,
temperature=0.0, # Deterministic
top_k=1, # Most likely token
top_p=1.0, # No sampling
repeat_penalty=1.0, # No penalty
stream=False # Get complete response
)
translation = response['choices'][0]['text'].strip()
# Cache result
if len(translation_cache) >= MAX_CACHE_SIZE:
# Remove oldest entry (first key)
translation_cache.pop(next(iter(translation_cache)))
translation_cache[cache_key] = translation
# Log performance
inference_time = time.time() - start_time
tokens_per_second = (input_tokens + len(translation.split())) / inference_time
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)")
return translation
def request_translation(self, direction, text, callback_id):
"""Queue a translation request"""
self.request_queue.put((direction, text, callback_id))
# Model preloading thread that preloads and pre-computes common translations
def preload_common_phrases(worker):
# Dictionary of common phrases that will benefit from caching
common_phrases = {
"English to Spanish": [
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is",
"How much does it cost?", "What time is it?", "I don't speak Spanish",
"Where is the bathroom?", "I need help", "Can you help me?"
],
"Spanish to English": [
"Hola", "Gracias", "Buenos días", "¿Cómo estás?", "¿Cómo te llamas?",
"No entiendo", "Por favor", "Lo siento", "Sí", "No", "Dónde está",
"¿Cuánto cuesta?", "¿Qué hora es?", "No hablo español", "¿Dónde está el baño?",
"Necesito ayuda", "¿Puedes ayudarme?"
],
"English to Korean": [
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is",
"How much is this?", "What time is it?", "I don't speak Korean"
],
"Korean to English": [
"안녕하세요", "감사합니다", "좋은 아침입니다", "어떻게 지내세요?", "이름이 뭐예요?",
"이해가 안 돼요", "제발", "죄송합니다", "네", "아니요", "어디에 있어요",
"이거 얼마예요?", "지금 몇 시예요?", "한국어를 못해요"
]
}
preload_requests = []
for direction, phrases in common_phrases.items():
for phrase in phrases:
preload_requests.append((direction, phrase, f"preload_{len(preload_requests)}"))
# Process preloading in a separate thread
def preloader():
print(f"Preloading {len(preload_requests)} common phrases in background...")
for request in preload_requests:
worker.request_translation(*request)
# Small sleep to avoid overwhelming the queue
time.sleep(0.1)
print("Preloading complete")
thread = threading.Thread(target=preloader, daemon=True)
thread.start()
return thread
# Create worker instance
worker = ModelWorker()
# Start preloading common phrases in background
preload_thread = preload_common_phrases(worker)
# Counter for request IDs
next_request_id = 0
# Implementation of a faster sentence splitter for batching
def split_sentences(text, max_length=50):
"""Split text into manageable chunks for faster translation"""
if len(text) <= max_length:
return [text]
# Split on natural boundaries
delimiters = ['. ', '! ', '? ', '.\n', '!\n', '?\n', '\n\n']
chunks = []
current_chunk = ""
lines = text.split('\n')
for line in lines:
if not line.strip():
if current_chunk:
chunks.append(current_chunk)
current_chunk = ""
continue
words = line.split(' ')
for word in words:
test_chunk = f"{current_chunk} {word}".strip()
if len(test_chunk) > max_length:
chunks.append(current_chunk)
current_chunk = word
else:
current_chunk = test_chunk
# Check for natural breaks
for delimiter in delimiters:
if delimiter in current_chunk[-len(delimiter):]:
chunks.append(current_chunk)
current_chunk = ""
break
if current_chunk:
chunks.append(current_chunk)
return chunks
# Gradio interface functions
def translate(direction, text, progress=gr.Progress()):
"""Fast translation with batching and caching"""
global next_request_id
# Skip empty inputs
if not text or not text.strip():
return ""
# Check exact cache hit
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# For longer texts, split into sentences for faster processing
if len(text) > 50:
progress(0.1, desc="Processing text...")
chunks = split_sentences(text)
if len(chunks) > 1:
results = []
for i, chunk in enumerate(chunks):
# Check if this chunk is in cache
chunk_key = f"{direction}:{chunk}"
if chunk_key in translation_cache:
results.append(translation_cache[chunk_key])
continue
# Request translation for this chunk
chunk_id = next_request_id
next_request_id += 1
worker.request_translation(direction, chunk, chunk_id)
# Wait for response
chunk_start = time.time()
while time.time() - chunk_start < 10: # 10 second timeout per chunk
progress((i + 0.5) / len(chunks), desc=f"Translating part {i+1}/{len(chunks)}")
try:
while not worker.response_queue.empty():
resp_id, result = worker.response_queue.get_nowait()
if resp_id == chunk_id:
results.append(result)
chunk_found = True
break
except queue.Empty:
pass
time.sleep(0.05)
if len(results) != i + 1:
results.append(f"[Translation failed for part {i+1}]")
combined = " ".join(results)
translation_cache[cache_key] = combined
progress(1.0)
return combined
# For single sentences
request_id = next_request_id
next_request_id += 1
# Queue the request
worker.request_translation(direction, text, request_id)
# Wait for the response
progress(0.2, desc="Translating...")
start_time = time.time()
max_wait = 20 # Maximum wait time in seconds
while time.time() - start_time < max_wait:
progress(0.2 + 0.8 * ((time.time() - start_time) / max_wait), desc="Translating...")
# Check for our response
try:
while not worker.response_queue.empty():
resp_id, result = worker.response_queue.get_nowait()
if resp_id == request_id:
progress(1.0)
return result
except queue.Empty:
pass
# Small sleep to prevent CPU hogging
time.sleep(0.05)
progress(1.0)
return "Translation timed out. Please try again with a shorter text."
# Create Gradio interface
with gr.Blocks(title="Ultra-Fast Translation App (CPU Optimized)") as iface:
gr.Markdown(f"""
## Ultra-Fast Translation App (CPU Optimized)
Running on: {'GPU: ' + gpu_name if has_gpu else 'CPU optimized with int4 quantization'}
""")
with gr.Row():
direction = gr.Dropdown(
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"],
label="Translation Direction",
value="English to Spanish"
)
with gr.Row():
input_text = gr.Textbox(lines=5, label="Input Text", placeholder="Enter text to translate...")
output_text = gr.Textbox(lines=5, label="Translation")
# Add translate button
translate_btn = gr.Button("Translate")
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
# Optimization options
with gr.Accordion("Performance Tips", open=True):
gr.Markdown("""
### Speed Optimization Tips
- ✅ The model has been quantized to int4 for faster CPU execution
- ✅ Common phrases are pre-cached for instant results
- ✅ Long text is automatically split into smaller chunks
- ✅ First translation will be slower as the model warms up
- ✅ Short sentences (< 50 chars) translate much faster
""")
# Add examples with preloaded common phrases
gr.Examples(
examples=[
["English to Spanish", "Hello, how are you today?"],
["Spanish to English", "Hola, ¿cómo estás hoy?"],
["English to Korean", "The weather is nice today."],
["Korean to English", "안녕하세요, 만나서 반갑습니다."]
],
inputs=[direction, input_text],
fn=translate,
outputs=output_text
)
# Launch with optimized settings
if __name__ == "__main__":
iface.launch(
debug=False,
show_error=True,
share=False,
quiet=True,
server_name="0.0.0.0",
server_port=7860
) |