Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import multiprocessing
|
|
5 |
import time
|
6 |
import os
|
7 |
|
8 |
-
# Model paths
|
9 |
def get_model_path(repo_id, filename):
|
10 |
print(f"Obtaining {filename}...")
|
11 |
return hf_hub_download(repo_id=repo_id, filename=filename)
|
@@ -20,47 +20,47 @@ adapter_path = get_model_path(
|
|
20 |
"articulate-V1-q8_0.gguf"
|
21 |
)
|
22 |
|
23 |
-
# CPU
|
24 |
cpu_count = multiprocessing.cpu_count()
|
25 |
-
|
26 |
-
|
27 |
-
batch_size = int(os.environ.get("BATCH_SIZE", "512")) # Configurable batch size
|
28 |
|
29 |
print(f"Initializing model with {optimal_threads} threads and batch size {batch_size}...")
|
30 |
|
31 |
-
# Initialize model with
|
32 |
start_time = time.time()
|
33 |
llm = Llama(
|
34 |
model_path=base_model_path,
|
35 |
lora_path=adapter_path,
|
36 |
-
n_ctx=512,
|
37 |
-
n_threads=optimal_threads,
|
38 |
-
n_batch=batch_size,
|
39 |
-
use_mmap=True,
|
40 |
-
n_gpu_layers=0,
|
41 |
-
|
42 |
-
verbose=False # Reduce logging overhead
|
43 |
)
|
44 |
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
|
45 |
|
46 |
-
#
|
47 |
translation_cache = {}
|
48 |
-
MAX_CACHE_SIZE =
|
49 |
|
50 |
def translate(direction, text):
|
51 |
-
#
|
52 |
if not text or not text.strip():
|
53 |
return ""
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
cache_key = f"{direction}:{text}"
|
57 |
if cache_key in translation_cache:
|
58 |
return translation_cache[cache_key]
|
59 |
|
60 |
-
# Start timing
|
61 |
start_time = time.time()
|
62 |
|
63 |
-
#
|
64 |
lang_map = {
|
65 |
"English to Spanish": ("ENGLISH", "SPANISH"),
|
66 |
"Spanish to English": ("SPANISH", "ENGLISH"),
|
@@ -73,42 +73,42 @@ def translate(direction, text):
|
|
73 |
|
74 |
source_lang, target_lang = lang_map[direction]
|
75 |
|
76 |
-
#
|
77 |
-
prompt = f"[{source_lang}]{text
|
78 |
-
|
79 |
-
# Estimate appropriate token length based on input
|
80 |
-
input_tokens = len(text.split())
|
81 |
-
max_tokens = min(200, max(50, int(input_tokens * 1.5)))
|
82 |
-
|
83 |
-
# Generate translation with optimized settings
|
84 |
-
response = llm.create_completion(
|
85 |
-
prompt,
|
86 |
-
max_tokens=max_tokens,
|
87 |
-
temperature=0.0, # Deterministic for faster inference
|
88 |
-
top_k=1, # Only consider most likely token
|
89 |
-
top_p=1.0, # No sampling
|
90 |
-
repeat_penalty=1.0, # No repeat penalty processing
|
91 |
-
stream=False # Get complete response at once (faster)
|
92 |
-
)
|
93 |
-
|
94 |
-
translation = response['choices'][0]['text'].strip()
|
95 |
-
|
96 |
-
# Cache result
|
97 |
-
if len(translation_cache) >= MAX_CACHE_SIZE:
|
98 |
-
# Remove oldest entry (first key)
|
99 |
-
translation_cache.pop(next(iter(translation_cache)))
|
100 |
-
translation_cache[cache_key] = translation
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
# Create Gradio interface
|
110 |
-
with gr.Blocks(title="
|
111 |
-
gr.Markdown("## Translation App")
|
112 |
|
113 |
with gr.Row():
|
114 |
direction = gr.Dropdown(
|
@@ -125,7 +125,7 @@ with gr.Blocks(title="Fast Translation App") as iface:
|
|
125 |
translate_btn = gr.Button("Translate")
|
126 |
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
|
127 |
|
128 |
-
#
|
129 |
gr.Examples(
|
130 |
examples=[
|
131 |
["English to Spanish", "Hello, how are you today?"],
|
@@ -134,10 +134,8 @@ with gr.Blocks(title="Fast Translation App") as iface:
|
|
134 |
["Korean to English", "μ€λ λ μ¨κ° μ’μ΅λλ€."]
|
135 |
],
|
136 |
inputs=[direction, input_text],
|
137 |
-
|
138 |
-
outputs=output_text,
|
139 |
-
cache_examples=True
|
140 |
)
|
141 |
|
142 |
-
# Launch with
|
143 |
iface.launch(debug=False, show_error=True)
|
|
|
5 |
import time
|
6 |
import os
|
7 |
|
8 |
+
# Model paths
|
9 |
def get_model_path(repo_id, filename):
|
10 |
print(f"Obtaining {filename}...")
|
11 |
return hf_hub_download(repo_id=repo_id, filename=filename)
|
|
|
20 |
"articulate-V1-q8_0.gguf"
|
21 |
)
|
22 |
|
23 |
+
# Conservative CPU settings to avoid memory corruption
|
24 |
cpu_count = multiprocessing.cpu_count()
|
25 |
+
optimal_threads = max(1, min(8, cpu_count // 2)) # More conservative thread count
|
26 |
+
batch_size = 128 # Reduced batch size to prevent memory issues
|
|
|
27 |
|
28 |
print(f"Initializing model with {optimal_threads} threads and batch size {batch_size}...")
|
29 |
|
30 |
+
# Initialize model with safer parameters
|
31 |
start_time = time.time()
|
32 |
llm = Llama(
|
33 |
model_path=base_model_path,
|
34 |
lora_path=adapter_path,
|
35 |
+
n_ctx=512,
|
36 |
+
n_threads=optimal_threads,
|
37 |
+
n_batch=batch_size, # Smaller batch size for stability
|
38 |
+
use_mmap=True,
|
39 |
+
n_gpu_layers=0,
|
40 |
+
verbose=False
|
|
|
41 |
)
|
42 |
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
|
43 |
|
44 |
+
# Simple translation cache (limited size)
|
45 |
translation_cache = {}
|
46 |
+
MAX_CACHE_SIZE = 50 # Reduced cache size
|
47 |
|
48 |
def translate(direction, text):
|
49 |
+
# Validate input
|
50 |
if not text or not text.strip():
|
51 |
return ""
|
52 |
+
|
53 |
+
text = text.strip()
|
54 |
+
|
55 |
+
# Simple cache lookup
|
56 |
cache_key = f"{direction}:{text}"
|
57 |
if cache_key in translation_cache:
|
58 |
return translation_cache[cache_key]
|
59 |
|
60 |
+
# Start timing
|
61 |
start_time = time.time()
|
62 |
|
63 |
+
# Language mapping
|
64 |
lang_map = {
|
65 |
"English to Spanish": ("ENGLISH", "SPANISH"),
|
66 |
"Spanish to English": ("SPANISH", "ENGLISH"),
|
|
|
73 |
|
74 |
source_lang, target_lang = lang_map[direction]
|
75 |
|
76 |
+
# Create prompt
|
77 |
+
prompt = f"[{source_lang}]{text}[{target_lang}]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
try:
|
80 |
+
# Generate translation with conservative settings
|
81 |
+
response = llm.create_completion(
|
82 |
+
prompt,
|
83 |
+
max_tokens=128, # Conservative token limit
|
84 |
+
temperature=0.0, # Deterministic
|
85 |
+
top_k=1, # Most likely token only
|
86 |
+
top_p=1.0, # No sampling
|
87 |
+
repeat_penalty=1.0,
|
88 |
+
stream=False
|
89 |
+
)
|
90 |
+
|
91 |
+
translation = response['choices'][0]['text'].strip()
|
92 |
+
|
93 |
+
# Manage cache size
|
94 |
+
if len(translation_cache) >= MAX_CACHE_SIZE:
|
95 |
+
# Remove oldest entry
|
96 |
+
translation_cache.pop(next(iter(translation_cache)))
|
97 |
+
translation_cache[cache_key] = translation
|
98 |
+
|
99 |
+
# Log performance
|
100 |
+
inference_time = time.time() - start_time
|
101 |
+
print(f"Translation completed in {inference_time:.3f}s")
|
102 |
+
|
103 |
+
return translation
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Translation error: {e}")
|
107 |
+
return f"Error during translation: {str(e)}"
|
108 |
|
109 |
+
# Create Gradio interface
|
110 |
+
with gr.Blocks(title="Translation App") as iface:
|
111 |
+
gr.Markdown("## Fast Translation App")
|
112 |
|
113 |
with gr.Row():
|
114 |
direction = gr.Dropdown(
|
|
|
125 |
translate_btn = gr.Button("Translate")
|
126 |
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
|
127 |
|
128 |
+
# Examples WITHOUT caching (to avoid memory issues)
|
129 |
gr.Examples(
|
130 |
examples=[
|
131 |
["English to Spanish", "Hello, how are you today?"],
|
|
|
134 |
["Korean to English", "μ€λ λ μ¨κ° μ’μ΅λλ€."]
|
135 |
],
|
136 |
inputs=[direction, input_text],
|
137 |
+
cache_examples=False # Disabled caching to prevent memory issues
|
|
|
|
|
138 |
)
|
139 |
|
140 |
+
# Launch with safer settings
|
141 |
iface.launch(debug=False, show_error=True)
|