Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,72 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
-
import torch
|
4 |
-
import gradio as gr
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
import threading
|
7 |
import queue
|
8 |
import multiprocessing
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
has_gpu = torch.cuda.is_available()
|
13 |
gpu_name = torch.cuda.get_device_name(0) if has_gpu else "No GPU"
|
14 |
print(f"GPU available: {has_gpu} - {gpu_name}")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
# Download model files
|
17 |
def get_model_path(repo_id, filename):
|
18 |
print(f"Obtaining {filename}...")
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
21 |
base_model_path = get_model_path(
|
22 |
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
|
23 |
"articulate-11-expspanish-base-merged-q8_0.gguf"
|
@@ -27,146 +76,120 @@ adapter_path = get_model_path(
|
|
27 |
"articulate-V1-q8_0.gguf"
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
os.environ["LLAMA_F16"] = "1" # Use FP16 where available
|
36 |
|
37 |
-
# Import
|
38 |
from llama_cpp import Llama
|
39 |
-
print("Using CPU-optimized llama-cpp-python")
|
40 |
|
41 |
-
#
|
42 |
translation_cache = {}
|
43 |
-
MAX_CACHE_SIZE =
|
44 |
-
|
45 |
-
# Common phrases for pre-loading
|
46 |
-
COMMON_PHRASES = {
|
47 |
-
"English to Spanish": [
|
48 |
-
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
|
49 |
-
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is"
|
50 |
-
],
|
51 |
-
"Spanish to English": [
|
52 |
-
"Hola", "Gracias", "Buenos dรญas", "ยฟCรณmo estรกs?", "ยฟCรณmo te llamas?",
|
53 |
-
"No entiendo", "Por favor", "Lo siento", "Sรญ", "No", "Dรณnde estรก"
|
54 |
-
],
|
55 |
-
"English to Korean": [
|
56 |
-
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
|
57 |
-
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is"
|
58 |
-
],
|
59 |
-
"Korean to English": [
|
60 |
-
"์๋
ํ์ธ์", "๊ฐ์ฌํฉ๋๋ค", "์ข์ ์์นจ์
๋๋ค", "์ด๋ป๊ฒ ์ง๋ด์ธ์?", "์ด๋ฆ์ด ๋ญ์์?",
|
61 |
-
"์ดํด๊ฐ ์ ๋ผ์", "์ ๋ฐ", "์ฃ์กํฉ๋๋ค", "๋ค", "์๋์", "์ด๋์ ์์ด์"
|
62 |
-
]
|
63 |
-
}
|
64 |
-
|
65 |
-
# Implement LRU cache for better performance
|
66 |
-
@lru_cache(maxsize=100)
|
67 |
-
def get_cached_translation(direction, text):
|
68 |
-
"""LRU cache for translations"""
|
69 |
-
return None # This gets bypassed when there's a cache hit
|
70 |
|
71 |
-
#
|
72 |
-
class
|
73 |
-
def __init__(self
|
74 |
-
self.
|
75 |
self.request_queue = queue.Queue()
|
76 |
self.response_queue = queue.Queue()
|
77 |
-
self.
|
78 |
-
self.
|
79 |
-
|
80 |
-
#
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
cpu_count = multiprocessing.cpu_count()
|
86 |
-
optimal_threads = max(1, min(4, cpu_count - 1)) # Use fewer threads for better performance
|
87 |
-
|
88 |
-
# Create a smaller context size for faster inference
|
89 |
-
self.model = Llama(
|
90 |
-
model_path=base_model_path,
|
91 |
-
lora_path=adapter_path,
|
92 |
-
n_ctx=256, # Reduced context for faster processing
|
93 |
-
n_threads=optimal_threads, # Optimized thread count
|
94 |
-
n_batch=512, # Reduced batch size for CPU
|
95 |
-
use_mmap=True, # Efficient memory mapping
|
96 |
-
n_gpu_layers=0, # CPU only
|
97 |
-
seed=42, # Consistent results
|
98 |
-
verbose=False, # Reduce overhead
|
99 |
-
rope_freq_base=10000, # Default attention parameters
|
100 |
-
rope_freq_scale=1.0,
|
101 |
-
)
|
102 |
-
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
|
103 |
-
|
104 |
-
# Start worker threads
|
105 |
-
for i in range(num_workers):
|
106 |
-
worker = threading.Thread(target=self._worker_loop, daemon=True)
|
107 |
-
worker.start()
|
108 |
-
self.workers.append(worker)
|
109 |
-
|
110 |
-
self.initialized = True
|
111 |
-
|
112 |
-
# Pre-warm in background thread to not block startup
|
113 |
-
warming_thread = threading.Thread(target=self._prewarm_model, daemon=True)
|
114 |
-
warming_thread.start()
|
115 |
|
116 |
-
def
|
117 |
-
"""
|
118 |
while True:
|
119 |
try:
|
|
|
120 |
request = self.request_queue.get()
|
121 |
-
if request is None:
|
122 |
break
|
123 |
-
|
124 |
-
direction, text, callback_id = request
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
#
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
# Process new translation
|
139 |
-
result = self._process_translation(direction, text)
|
140 |
-
# Store in regular cache
|
141 |
-
if len(translation_cache) >= MAX_CACHE_SIZE:
|
142 |
-
translation_cache.pop(next(iter(translation_cache)))
|
143 |
-
translation_cache[cache_key] = result
|
144 |
|
145 |
-
self.response_queue.put((callback_id, result))
|
146 |
-
self.request_queue.task_done()
|
147 |
except Exception as e:
|
148 |
-
print(f"Error in
|
149 |
-
self.response_queue.put((callback_id, f"Error: {str(e)}"))
|
150 |
-
self.request_queue.task_done()
|
151 |
|
152 |
-
def
|
153 |
-
"""
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
def _process_translation(self, direction, text):
|
165 |
-
"""
|
166 |
-
# Skip empty inputs
|
167 |
if not text or not text.strip():
|
168 |
return ""
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
# Start timing for performance tracking
|
171 |
start_time = time.time()
|
172 |
|
@@ -183,185 +206,279 @@ class ModelWorkerPool:
|
|
183 |
|
184 |
source_lang, target_lang = lang_map[direction]
|
185 |
|
186 |
-
# Truncate long inputs for faster processing
|
187 |
-
max_input_length = 100 # Limit input length
|
188 |
-
if len(text) > max_input_length:
|
189 |
-
text = text[:max_input_length] + "..."
|
190 |
-
|
191 |
# Efficient prompt format
|
192 |
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]"
|
193 |
|
194 |
-
#
|
195 |
-
input_tokens = len(text.split())
|
196 |
-
max_tokens = min(
|
197 |
|
198 |
-
# Generate translation with
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
#
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
222 |
|
223 |
def request_translation(self, direction, text, callback_id):
|
224 |
"""Queue a translation request"""
|
225 |
self.request_queue.put((direction, text, callback_id))
|
226 |
|
227 |
-
#
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
# Counter for request IDs
|
231 |
next_request_id = 0
|
232 |
|
233 |
-
#
|
234 |
-
def
|
235 |
-
"""
|
236 |
-
if len(text)
|
237 |
-
return
|
238 |
-
|
239 |
-
text_lower = text.lower()
|
240 |
-
best_match = None
|
241 |
-
best_score = 0
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
continue
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
if
|
252 |
-
|
253 |
-
|
|
|
|
|
254 |
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
# Gradio interface functions
|
258 |
def translate(direction, text, progress=gr.Progress()):
|
259 |
-
"""
|
260 |
global next_request_id
|
261 |
|
262 |
-
# Trim whitespace for better cache hits
|
263 |
-
text = text.strip()
|
264 |
-
|
265 |
# Skip empty inputs
|
266 |
-
if not text:
|
267 |
return ""
|
268 |
|
269 |
-
# Check
|
270 |
-
cached = get_cached_translation(direction, text)
|
271 |
-
if cached is not None:
|
272 |
-
return cached
|
273 |
-
|
274 |
-
# Check main cache
|
275 |
cache_key = f"{direction}:{text}"
|
276 |
if cache_key in translation_cache:
|
277 |
return translation_cache[cache_key]
|
278 |
|
279 |
-
# For
|
280 |
-
if len(text)
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
#
|
286 |
request_id = next_request_id
|
287 |
next_request_id += 1
|
288 |
|
289 |
# Queue the request
|
290 |
-
|
291 |
|
292 |
-
# Wait for the response
|
293 |
-
progress(0, desc="Translating...")
|
294 |
-
max_wait = 20 # Reduced maximum wait time
|
295 |
start_time = time.time()
|
|
|
296 |
|
297 |
-
# Show progress while waiting
|
298 |
while time.time() - start_time < max_wait:
|
299 |
-
progress((time.time() - start_time) / max_wait)
|
300 |
|
301 |
# Check for our response
|
302 |
try:
|
303 |
-
while not
|
304 |
-
resp_id, result =
|
305 |
if resp_id == request_id:
|
306 |
-
# Update LRU cache
|
307 |
-
get_cached_translation.__wrapped__.__defaults__ = (result,)
|
308 |
progress(1.0)
|
309 |
return result
|
310 |
except queue.Empty:
|
311 |
pass
|
312 |
|
313 |
-
# Small sleep to prevent CPU hogging
|
314 |
-
time.sleep(0.
|
315 |
|
316 |
progress(1.0)
|
317 |
-
return "Translation timed out. Please try a shorter text."
|
318 |
|
319 |
-
# Create Gradio interface
|
320 |
-
with gr.Blocks(title="Fast
|
321 |
gr.Markdown(f"""
|
322 |
-
## Fast
|
323 |
-
Running on: {'GPU: ' + gpu_name if has_gpu else 'CPU
|
324 |
-
**For best performance, use short sentences or phrases.**
|
325 |
""")
|
326 |
|
327 |
with gr.Row():
|
328 |
-
direction = gr.
|
329 |
-
choices=["English to Spanish", "Spanish to English", "
|
330 |
label="Translation Direction",
|
331 |
value="English to Spanish"
|
332 |
)
|
333 |
|
334 |
with gr.Row():
|
335 |
-
input_text = gr.Textbox(lines=
|
336 |
-
output_text = gr.Textbox(lines=
|
337 |
|
338 |
# Add translate button
|
339 |
translate_btn = gr.Button("Translate")
|
340 |
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
|
341 |
|
342 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
gr.Examples(
|
344 |
examples=[
|
345 |
-
["English to Spanish", "Hello"],
|
346 |
-
["Spanish to English", "Hola"],
|
347 |
-
["English to Korean", "
|
348 |
-
["Korean to English", "
|
349 |
],
|
350 |
inputs=[direction, input_text],
|
351 |
fn=translate,
|
352 |
outputs=output_text
|
353 |
)
|
354 |
-
|
355 |
-
# Add performance tips
|
356 |
-
gr.Markdown("""
|
357 |
-
### Performance Tips
|
358 |
-
- Keep text under 50 characters for fastest results
|
359 |
-
- Common phrases are pre-cached
|
360 |
-
- First translation may be slow, subsequent ones faster
|
361 |
-
- Frequently used phrases use an LRU cache for speed
|
362 |
-
""")
|
363 |
-
|
364 |
|
365 |
-
|
366 |
-
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
|
|
|
|
|
|
3 |
import threading
|
4 |
import queue
|
5 |
import multiprocessing
|
6 |
+
from pathlib import Path
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
# Set up environment variables for CPU optimization
|
13 |
+
os.environ["OMP_NUM_THREADS"] = str(max(1, multiprocessing.cpu_count() - 1)) # Optimal OpenMP threads
|
14 |
+
os.environ["MKL_NUM_THREADS"] = str(max(1, multiprocessing.cpu_count() - 1)) # Optimal MKL threads
|
15 |
+
os.environ["LLAMA_AVX"] = "1"
|
16 |
+
os.environ["LLAMA_AVX2"] = "1"
|
17 |
+
os.environ["LLAMA_F16"] = "1"
|
18 |
+
|
19 |
+
# Cache directories
|
20 |
+
CACHE_DIR = Path.home() / ".cache" / "fast_translate"
|
21 |
+
MODEL_CACHE = CACHE_DIR / "models"
|
22 |
+
QUANTIZED_CACHE = CACHE_DIR / "quantized"
|
23 |
+
os.makedirs(MODEL_CACHE, exist_ok=True)
|
24 |
+
os.makedirs(QUANTIZED_CACHE, exist_ok=True)
|
25 |
|
26 |
+
# Check if we're running on CPU
|
27 |
has_gpu = torch.cuda.is_available()
|
28 |
gpu_name = torch.cuda.get_device_name(0) if has_gpu else "No GPU"
|
29 |
print(f"GPU available: {has_gpu} - {gpu_name}")
|
30 |
|
31 |
+
# Configure CPU settings
|
32 |
+
cpu_count = multiprocessing.cpu_count()
|
33 |
+
optimal_threads = max(4, cpu_count - 1) # Leave one core free
|
34 |
+
print(f"Using {optimal_threads} of {cpu_count} CPU cores")
|
35 |
+
|
36 |
# Download model files
|
37 |
def get_model_path(repo_id, filename):
|
38 |
print(f"Obtaining {filename}...")
|
39 |
+
# Download to our custom cache location
|
40 |
+
return hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=MODEL_CACHE)
|
41 |
+
|
42 |
+
# Function to quantize model to int4 or int8
|
43 |
+
def quantize_model(input_model_path, output_model_path, quantization_type="q4_0"):
|
44 |
+
"""Quantize model to lower precision for faster inference on CPU"""
|
45 |
+
try:
|
46 |
+
from llama_cpp import llama_model_quantize
|
47 |
+
|
48 |
+
# Check if quantized model already exists
|
49 |
+
if os.path.exists(output_model_path):
|
50 |
+
print(f"Using existing quantized model: {output_model_path}")
|
51 |
+
return output_model_path
|
52 |
+
|
53 |
+
print(f"Quantizing model to {quantization_type}...")
|
54 |
+
start_time = time.time()
|
55 |
+
|
56 |
+
# Quantize using llama-cpp-python built-in quantization
|
57 |
+
llama_model_quantize(
|
58 |
+
input_model_path,
|
59 |
+
output_model_path,
|
60 |
+
quantization_type
|
61 |
+
)
|
62 |
+
|
63 |
+
print(f"Quantization completed in {time.time() - start_time:.2f}s")
|
64 |
+
return output_model_path
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Quantization failed: {e}, using original model")
|
67 |
+
return input_model_path
|
68 |
|
69 |
+
# Download models
|
70 |
base_model_path = get_model_path(
|
71 |
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
|
72 |
"articulate-11-expspanish-base-merged-q8_0.gguf"
|
|
|
76 |
"articulate-V1-q8_0.gguf"
|
77 |
)
|
78 |
|
79 |
+
# Quantize models (creates int4 versions for faster CPU inference)
|
80 |
+
quantized_base_path = str(QUANTIZED_CACHE / "articulate-base-q4_0.gguf")
|
81 |
+
quantized_adapter_path = str(QUANTIZED_CACHE / "articulate-adapter-q4_0.gguf")
|
82 |
+
base_model_path = quantize_model(base_model_path, quantized_base_path, "q4_0")
|
83 |
+
adapter_path = quantize_model(adapter_path, quantized_adapter_path, "q4_0")
|
|
|
84 |
|
85 |
+
# Import after setting environment variables
|
86 |
from llama_cpp import Llama
|
|
|
87 |
|
88 |
+
# Translation cache
|
89 |
translation_cache = {}
|
90 |
+
MAX_CACHE_SIZE = 1000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# Model worker with batching support
|
93 |
+
class ModelWorker:
|
94 |
+
def __init__(self):
|
95 |
+
self.model = None
|
96 |
self.request_queue = queue.Queue()
|
97 |
self.response_queue = queue.Queue()
|
98 |
+
self.batch_queue = []
|
99 |
+
self.batch_event = threading.Event()
|
100 |
+
self.batch_size = 4 # Process up to 4 requests at once
|
101 |
+
self.batch_timeout = 0.1 # Wait 100ms max to collect batch
|
102 |
+
self.worker_thread = threading.Thread(target=self._worker_loop, daemon=True)
|
103 |
+
self.batch_thread = threading.Thread(target=self._batch_loop, daemon=True)
|
104 |
+
self.worker_thread.start()
|
105 |
+
self.batch_thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
def _batch_loop(self):
|
108 |
+
"""Collect requests into batches for more efficient processing"""
|
109 |
while True:
|
110 |
try:
|
111 |
+
# Get a request
|
112 |
request = self.request_queue.get()
|
113 |
+
if request is None:
|
114 |
break
|
|
|
|
|
115 |
|
116 |
+
# Add to batch
|
117 |
+
self.batch_queue.append(request)
|
118 |
+
|
119 |
+
# Try to collect more requests for the batch
|
120 |
+
batch_start = time.time()
|
121 |
+
while (len(self.batch_queue) < self.batch_size and
|
122 |
+
time.time() - batch_start < self.batch_timeout):
|
123 |
+
try:
|
124 |
+
req = self.request_queue.get_nowait()
|
125 |
+
if req is None:
|
126 |
+
break
|
127 |
+
self.batch_queue.append(req)
|
128 |
+
except queue.Empty:
|
129 |
+
time.sleep(0.01)
|
130 |
|
131 |
+
# Signal worker to process the batch
|
132 |
+
current_batch = self.batch_queue.copy()
|
133 |
+
self.batch_queue = []
|
134 |
+
for req in current_batch:
|
135 |
+
self._process_request(req)
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
137 |
except Exception as e:
|
138 |
+
print(f"Error in batch thread: {e}")
|
|
|
|
|
139 |
|
140 |
+
def _worker_loop(self):
|
141 |
+
"""Initialize model and process requests"""
|
142 |
+
try:
|
143 |
+
# Initialize model with optimized settings
|
144 |
+
print("Initializing model in background thread...")
|
145 |
+
start_time = time.time()
|
146 |
+
|
147 |
+
# Create model context with very optimized settings for CPU
|
148 |
+
self.model = Llama(
|
149 |
+
model_path=base_model_path,
|
150 |
+
lora_path=adapter_path,
|
151 |
+
n_ctx=256, # Smaller context for speed
|
152 |
+
n_threads=optimal_threads, # Use all but one CPU core
|
153 |
+
n_batch=512, # Smaller batch for CPU
|
154 |
+
use_mmap=True, # Memory mapping (more efficient)
|
155 |
+
n_gpu_layers=0, # Force CPU only
|
156 |
+
seed=42, # Consistent results
|
157 |
+
rope_freq_base=10000, # Default RoPE settings
|
158 |
+
rope_freq_scale=1.0,
|
159 |
+
verbose=False # Reduce overhead
|
160 |
+
)
|
161 |
|
162 |
+
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
|
163 |
+
|
164 |
+
# Pre-warm the model with common phrases by running a simple inference
|
165 |
+
print("Pre-warming model...")
|
166 |
+
self.model.create_completion("[ENGLISH]hello[SPANISH]", max_tokens=8)
|
167 |
+
print("Model ready for translation")
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
print(f"Failed to initialize model: {e}")
|
171 |
+
|
172 |
+
def _process_request(self, request):
|
173 |
+
"""Process a single translation request"""
|
174 |
+
try:
|
175 |
+
direction, text, callback_id = request
|
176 |
+
result = self._process_translation(direction, text)
|
177 |
+
self.response_queue.put((callback_id, result))
|
178 |
+
except Exception as e:
|
179 |
+
print(f"Error processing request: {e}")
|
180 |
+
self.response_queue.put((callback_id, f"Error: {str(e)}"))
|
181 |
|
182 |
def _process_translation(self, direction, text):
|
183 |
+
"""Translate text with optimized settings"""
|
|
|
184 |
if not text or not text.strip():
|
185 |
return ""
|
186 |
|
187 |
+
# Check cache first for faster response
|
188 |
+
cache_key = f"{direction}:{text}"
|
189 |
+
if cache_key in translation_cache:
|
190 |
+
print("Cache hit!")
|
191 |
+
return translation_cache[cache_key]
|
192 |
+
|
193 |
# Start timing for performance tracking
|
194 |
start_time = time.time()
|
195 |
|
|
|
206 |
|
207 |
source_lang, target_lang = lang_map[direction]
|
208 |
|
|
|
|
|
|
|
|
|
|
|
209 |
# Efficient prompt format
|
210 |
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]"
|
211 |
|
212 |
+
# Estimate appropriate token length based on input
|
213 |
+
input_tokens = min(100, max(10, len(text.split())))
|
214 |
+
max_tokens = min(100, max(25, int(input_tokens * 1.3)))
|
215 |
|
216 |
+
# Generate translation with aggressively optimized settings for speed
|
217 |
+
response = self.model.create_completion(
|
218 |
+
prompt,
|
219 |
+
max_tokens=max_tokens,
|
220 |
+
temperature=0.0, # Deterministic
|
221 |
+
top_k=1, # Most likely token
|
222 |
+
top_p=1.0, # No sampling
|
223 |
+
repeat_penalty=1.0, # No penalty
|
224 |
+
stream=False # Get complete response
|
225 |
+
)
|
226 |
+
|
227 |
+
translation = response['choices'][0]['text'].strip()
|
228 |
+
|
229 |
+
# Cache result
|
230 |
+
if len(translation_cache) >= MAX_CACHE_SIZE:
|
231 |
+
# Remove oldest entry (first key)
|
232 |
+
translation_cache.pop(next(iter(translation_cache)))
|
233 |
+
translation_cache[cache_key] = translation
|
234 |
+
|
235 |
+
# Log performance
|
236 |
+
inference_time = time.time() - start_time
|
237 |
+
tokens_per_second = (input_tokens + len(translation.split())) / inference_time
|
238 |
+
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)")
|
239 |
+
|
240 |
+
return translation
|
241 |
|
242 |
def request_translation(self, direction, text, callback_id):
|
243 |
"""Queue a translation request"""
|
244 |
self.request_queue.put((direction, text, callback_id))
|
245 |
|
246 |
+
# Model preloading thread that preloads and pre-computes common translations
|
247 |
+
def preload_common_phrases(worker):
|
248 |
+
# Dictionary of common phrases that will benefit from caching
|
249 |
+
common_phrases = {
|
250 |
+
"English to Spanish": [
|
251 |
+
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
|
252 |
+
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is",
|
253 |
+
"How much does it cost?", "What time is it?", "I don't speak Spanish",
|
254 |
+
"Where is the bathroom?", "I need help", "Can you help me?"
|
255 |
+
],
|
256 |
+
"Spanish to English": [
|
257 |
+
"Hola", "Gracias", "Buenos dรญas", "ยฟCรณmo estรกs?", "ยฟCรณmo te llamas?",
|
258 |
+
"No entiendo", "Por favor", "Lo siento", "Sรญ", "No", "Dรณnde estรก",
|
259 |
+
"ยฟCuรกnto cuesta?", "ยฟQuรฉ hora es?", "No hablo espaรฑol", "ยฟDรณnde estรก el baรฑo?",
|
260 |
+
"Necesito ayuda", "ยฟPuedes ayudarme?"
|
261 |
+
],
|
262 |
+
"English to Korean": [
|
263 |
+
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
|
264 |
+
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is",
|
265 |
+
"How much is this?", "What time is it?", "I don't speak Korean"
|
266 |
+
],
|
267 |
+
"Korean to English": [
|
268 |
+
"์๋
ํ์ธ์", "๊ฐ์ฌํฉ๋๋ค", "์ข์ ์์นจ์
๋๋ค", "์ด๋ป๊ฒ ์ง๋ด์ธ์?", "์ด๋ฆ์ด ๋ญ์์?",
|
269 |
+
"์ดํด๊ฐ ์ ๋ผ์", "์ ๋ฐ", "์ฃ์กํฉ๋๋ค", "๋ค", "์๋์", "์ด๋์ ์์ด์",
|
270 |
+
"์ด๊ฑฐ ์ผ๋ง์์?", "์ง๊ธ ๋ช ์์์?", "ํ๊ตญ์ด๋ฅผ ๋ชปํด์"
|
271 |
+
]
|
272 |
+
}
|
273 |
+
|
274 |
+
preload_requests = []
|
275 |
+
for direction, phrases in common_phrases.items():
|
276 |
+
for phrase in phrases:
|
277 |
+
preload_requests.append((direction, phrase, f"preload_{len(preload_requests)}"))
|
278 |
+
|
279 |
+
# Process preloading in a separate thread
|
280 |
+
def preloader():
|
281 |
+
print(f"Preloading {len(preload_requests)} common phrases in background...")
|
282 |
+
for request in preload_requests:
|
283 |
+
worker.request_translation(*request)
|
284 |
+
# Small sleep to avoid overwhelming the queue
|
285 |
+
time.sleep(0.1)
|
286 |
+
print("Preloading complete")
|
287 |
+
|
288 |
+
thread = threading.Thread(target=preloader, daemon=True)
|
289 |
+
thread.start()
|
290 |
+
return thread
|
291 |
+
|
292 |
+
# Create worker instance
|
293 |
+
worker = ModelWorker()
|
294 |
+
|
295 |
+
# Start preloading common phrases in background
|
296 |
+
preload_thread = preload_common_phrases(worker)
|
297 |
|
298 |
# Counter for request IDs
|
299 |
next_request_id = 0
|
300 |
|
301 |
+
# Implementation of a faster sentence splitter for batching
|
302 |
+
def split_sentences(text, max_length=50):
|
303 |
+
"""Split text into manageable chunks for faster translation"""
|
304 |
+
if len(text) <= max_length:
|
305 |
+
return [text]
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
# Split on natural boundaries
|
308 |
+
delimiters = ['. ', '! ', '? ', '.\n', '!\n', '?\n', '\n\n']
|
309 |
+
chunks = []
|
310 |
+
current_chunk = ""
|
311 |
+
|
312 |
+
lines = text.split('\n')
|
313 |
+
for line in lines:
|
314 |
+
if not line.strip():
|
315 |
+
if current_chunk:
|
316 |
+
chunks.append(current_chunk)
|
317 |
+
current_chunk = ""
|
318 |
continue
|
319 |
|
320 |
+
words = line.split(' ')
|
321 |
+
for word in words:
|
322 |
+
test_chunk = f"{current_chunk} {word}".strip()
|
323 |
+
if len(test_chunk) > max_length:
|
324 |
+
chunks.append(current_chunk)
|
325 |
+
current_chunk = word
|
326 |
+
else:
|
327 |
+
current_chunk = test_chunk
|
328 |
|
329 |
+
# Check for natural breaks
|
330 |
+
for delimiter in delimiters:
|
331 |
+
if delimiter in current_chunk[-len(delimiter):]:
|
332 |
+
chunks.append(current_chunk)
|
333 |
+
current_chunk = ""
|
334 |
+
break
|
335 |
+
|
336 |
+
if current_chunk:
|
337 |
+
chunks.append(current_chunk)
|
338 |
+
|
339 |
+
return chunks
|
340 |
|
341 |
# Gradio interface functions
|
342 |
def translate(direction, text, progress=gr.Progress()):
|
343 |
+
"""Fast translation with batching and caching"""
|
344 |
global next_request_id
|
345 |
|
|
|
|
|
|
|
346 |
# Skip empty inputs
|
347 |
+
if not text or not text.strip():
|
348 |
return ""
|
349 |
|
350 |
+
# Check exact cache hit
|
|
|
|
|
|
|
|
|
|
|
351 |
cache_key = f"{direction}:{text}"
|
352 |
if cache_key in translation_cache:
|
353 |
return translation_cache[cache_key]
|
354 |
|
355 |
+
# For longer texts, split into sentences for faster processing
|
356 |
+
if len(text) > 50:
|
357 |
+
progress(0.1, desc="Processing text...")
|
358 |
+
chunks = split_sentences(text)
|
359 |
+
if len(chunks) > 1:
|
360 |
+
results = []
|
361 |
+
for i, chunk in enumerate(chunks):
|
362 |
+
# Check if this chunk is in cache
|
363 |
+
chunk_key = f"{direction}:{chunk}"
|
364 |
+
if chunk_key in translation_cache:
|
365 |
+
results.append(translation_cache[chunk_key])
|
366 |
+
continue
|
367 |
+
|
368 |
+
# Request translation for this chunk
|
369 |
+
chunk_id = next_request_id
|
370 |
+
next_request_id += 1
|
371 |
+
worker.request_translation(direction, chunk, chunk_id)
|
372 |
+
|
373 |
+
# Wait for response
|
374 |
+
chunk_start = time.time()
|
375 |
+
while time.time() - chunk_start < 10: # 10 second timeout per chunk
|
376 |
+
progress((i + 0.5) / len(chunks), desc=f"Translating part {i+1}/{len(chunks)}")
|
377 |
+
|
378 |
+
try:
|
379 |
+
while not worker.response_queue.empty():
|
380 |
+
resp_id, result = worker.response_queue.get_nowait()
|
381 |
+
if resp_id == chunk_id:
|
382 |
+
results.append(result)
|
383 |
+
chunk_found = True
|
384 |
+
break
|
385 |
+
except queue.Empty:
|
386 |
+
pass
|
387 |
+
|
388 |
+
time.sleep(0.05)
|
389 |
+
|
390 |
+
if len(results) != i + 1:
|
391 |
+
results.append(f"[Translation failed for part {i+1}]")
|
392 |
+
|
393 |
+
combined = " ".join(results)
|
394 |
+
translation_cache[cache_key] = combined
|
395 |
+
progress(1.0)
|
396 |
+
return combined
|
397 |
|
398 |
+
# For single sentences
|
399 |
request_id = next_request_id
|
400 |
next_request_id += 1
|
401 |
|
402 |
# Queue the request
|
403 |
+
worker.request_translation(direction, text, request_id)
|
404 |
|
405 |
+
# Wait for the response
|
406 |
+
progress(0.2, desc="Translating...")
|
|
|
407 |
start_time = time.time()
|
408 |
+
max_wait = 20 # Maximum wait time in seconds
|
409 |
|
|
|
410 |
while time.time() - start_time < max_wait:
|
411 |
+
progress(0.2 + 0.8 * ((time.time() - start_time) / max_wait), desc="Translating...")
|
412 |
|
413 |
# Check for our response
|
414 |
try:
|
415 |
+
while not worker.response_queue.empty():
|
416 |
+
resp_id, result = worker.response_queue.get_nowait()
|
417 |
if resp_id == request_id:
|
|
|
|
|
418 |
progress(1.0)
|
419 |
return result
|
420 |
except queue.Empty:
|
421 |
pass
|
422 |
|
423 |
+
# Small sleep to prevent CPU hogging
|
424 |
+
time.sleep(0.05)
|
425 |
|
426 |
progress(1.0)
|
427 |
+
return "Translation timed out. Please try again with a shorter text."
|
428 |
|
429 |
+
# Create Gradio interface
|
430 |
+
with gr.Blocks(title="Ultra-Fast Translation App (CPU Optimized)") as iface:
|
431 |
gr.Markdown(f"""
|
432 |
+
## Ultra-Fast Translation App (CPU Optimized)
|
433 |
+
Running on: {'GPU: ' + gpu_name if has_gpu else 'CPU optimized with int4 quantization'}
|
|
|
434 |
""")
|
435 |
|
436 |
with gr.Row():
|
437 |
+
direction = gr.Dropdown(
|
438 |
+
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"],
|
439 |
label="Translation Direction",
|
440 |
value="English to Spanish"
|
441 |
)
|
442 |
|
443 |
with gr.Row():
|
444 |
+
input_text = gr.Textbox(lines=5, label="Input Text", placeholder="Enter text to translate...")
|
445 |
+
output_text = gr.Textbox(lines=5, label="Translation")
|
446 |
|
447 |
# Add translate button
|
448 |
translate_btn = gr.Button("Translate")
|
449 |
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
|
450 |
|
451 |
+
# Optimization options
|
452 |
+
with gr.Accordion("Performance Tips", open=True):
|
453 |
+
gr.Markdown("""
|
454 |
+
### Speed Optimization Tips
|
455 |
+
- โ
The model has been quantized to int4 for faster CPU execution
|
456 |
+
- โ
Common phrases are pre-cached for instant results
|
457 |
+
- โ
Long text is automatically split into smaller chunks
|
458 |
+
- โ
First translation will be slower as the model warms up
|
459 |
+
- โ
Short sentences (< 50 chars) translate much faster
|
460 |
+
""")
|
461 |
+
|
462 |
+
# Add examples with preloaded common phrases
|
463 |
gr.Examples(
|
464 |
examples=[
|
465 |
+
["English to Spanish", "Hello, how are you today?"],
|
466 |
+
["Spanish to English", "Hola, ยฟcรณmo estรกs hoy?"],
|
467 |
+
["English to Korean", "The weather is nice today."],
|
468 |
+
["Korean to English", "์๋
ํ์ธ์, ๋ง๋์ ๋ฐ๊ฐ์ต๋๋ค."]
|
469 |
],
|
470 |
inputs=[direction, input_text],
|
471 |
fn=translate,
|
472 |
outputs=output_text
|
473 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
+
# Launch with optimized settings
|
476 |
+
if __name__ == "__main__":
|
477 |
+
iface.launch(
|
478 |
+
debug=False,
|
479 |
+
show_error=True,
|
480 |
+
share=False,
|
481 |
+
quiet=True,
|
482 |
+
server_name="0.0.0.0",
|
483 |
+
server_port=7860
|
484 |
+
)
|