|
import pandas as pd |
|
from ctgan import CTGAN |
|
from sklearn.preprocessing import LabelEncoder |
|
import os |
|
import json |
|
import requests |
|
import streamlit as st |
|
|
|
def train_and_generate_synthetic(real_data, schema, output_path): |
|
"""Trains a CTGAN model and generates synthetic data.""" |
|
categorical_cols = [col for col, dtype in zip(schema['columns'], schema['types']) if dtype == 'string'] |
|
|
|
|
|
label_encoders = {} |
|
for col in categorical_cols: |
|
le = LabelEncoder() |
|
real_data[col] = le.fit_transform(real_data[col]) |
|
label_encoders[col] = le |
|
|
|
|
|
gan = CTGAN(epochs=300) |
|
gan.fit(real_data, categorical_cols) |
|
|
|
|
|
synthetic_data = gan.sample(schema['size']) |
|
|
|
|
|
for col in categorical_cols: |
|
synthetic_data[col] = label_encoders[col].inverse_transform(synthetic_data[col]) |
|
|
|
|
|
os.makedirs('outputs', exist_ok=True) |
|
synthetic_data.to_csv(output_path, index=False) |
|
print(f"β
Synthetic data saved to {output_path}") |
|
|
|
def generate_schema(prompt): |
|
"""Fetches schema from an external API and validates JSON.""" |
|
API_URL = "https://infinitymatter-synthetic-data-generator.hf.space/" |
|
headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} |
|
|
|
try: |
|
response = requests.post(API_URL, json={"prompt": prompt}, headers=headers) |
|
print("π Raw API Response:", response.text) |
|
|
|
schema = response.json() |
|
|
|
|
|
if 'columns' not in schema or 'types' not in schema or 'size' not in schema: |
|
raise ValueError("β Invalid schema format! Expected keys: 'columns', 'types', 'size'") |
|
|
|
print("β
Valid Schema Received:", schema) |
|
return schema |
|
|
|
except json.JSONDecodeError: |
|
print("β Failed to parse JSON response. API might be down or returning non-JSON data.") |
|
return None |
|
except requests.exceptions.RequestException as e: |
|
print(f"β API request failed: {e}") |
|
return None |
|
|
|
def fetch_data(domain): |
|
"""Fetches real data for the given domain and ensures it's a valid DataFrame.""" |
|
data_path = f"datasets/{domain}.csv" |
|
if os.path.exists(data_path): |
|
df = pd.read_csv(data_path) |
|
if not isinstance(df, pd.DataFrame) or df.empty: |
|
raise ValueError("β Loaded data is invalid!") |
|
return df |
|
else: |
|
raise FileNotFoundError(f"β Dataset for {domain} not found.") |
|
|