File size: 2,574 Bytes
1738d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a51830
1738d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
from ctgan import CTGAN
from sklearn.preprocessing import LabelEncoder
import os
import json
import requests
import streamlit as st

def train_and_generate_synthetic(real_data, schema, output_path):
    """Trains a CTGAN model and generates synthetic data."""
    categorical_cols = [col for col, dtype in zip(schema['columns'], schema['types']) if dtype == 'string']
    
    # Store label encoders
    label_encoders = {}
    for col in categorical_cols:
        le = LabelEncoder()
        real_data[col] = le.fit_transform(real_data[col])
        label_encoders[col] = le
    
    # Train CTGAN
    gan = CTGAN(epochs=300)
    gan.fit(real_data, categorical_cols)
    
    # Generate synthetic data
    synthetic_data = gan.sample(schema['size'])
    
    # Decode categorical columns
    for col in categorical_cols:
        synthetic_data[col] = label_encoders[col].inverse_transform(synthetic_data[col])
    
    # Save to CSV
    os.makedirs('outputs', exist_ok=True)
    synthetic_data.to_csv(output_path, index=False)
    print(f"βœ… Synthetic data saved to {output_path}")

def generate_schema(prompt):
    """Fetches schema from an external API and validates JSON."""
    API_URL = "https://infinitymatter-synthetic-data-generator.hf.space/"
    headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}

    try:
        response = requests.post(API_URL, json={"prompt": prompt}, headers=headers)
        print("πŸ” Raw API Response:", response.text)  # Debugging line

        schema = response.json()
        
        # Validate required keys
        if 'columns' not in schema or 'types' not in schema or 'size' not in schema:
            raise ValueError("❌ Invalid schema format! Expected keys: 'columns', 'types', 'size'")

        print("βœ… Valid Schema Received:", schema)  # Debugging line
        return schema

    except json.JSONDecodeError:
        print("❌ Failed to parse JSON response. API might be down or returning non-JSON data.")
        return None
    except requests.exceptions.RequestException as e:
        print(f"❌ API request failed: {e}")
        return None

def fetch_data(domain):
    """Fetches real data for the given domain and ensures it's a valid DataFrame."""
    data_path = f"datasets/{domain}.csv"
    if os.path.exists(data_path):
        df = pd.read_csv(data_path)
        if not isinstance(df, pd.DataFrame) or df.empty:
            raise ValueError("❌ Loaded data is invalid!")
        return df
    else:
        raise FileNotFoundError(f"❌ Dataset for {domain} not found.")