import pandas as pd from ctgan import CTGAN from sklearn.preprocessing import LabelEncoder import os import json import requests import streamlit as st def train_and_generate_synthetic(real_data, schema, output_path): """Trains a CTGAN model and generates synthetic data.""" categorical_cols = [col for col, dtype in zip(schema['columns'], schema['types']) if dtype == 'string'] # Store label encoders label_encoders = {} for col in categorical_cols: le = LabelEncoder() real_data[col] = le.fit_transform(real_data[col]) label_encoders[col] = le # Train CTGAN gan = CTGAN(epochs=300) gan.fit(real_data, categorical_cols) # Generate synthetic data synthetic_data = gan.sample(schema['size']) # Decode categorical columns for col in categorical_cols: synthetic_data[col] = label_encoders[col].inverse_transform(synthetic_data[col]) # Save to CSV os.makedirs('outputs', exist_ok=True) synthetic_data.to_csv(output_path, index=False) print(f"✅ Synthetic data saved to {output_path}") def generate_schema(prompt): """Fetches schema from an external API and validates JSON.""" API_URL = "https://infinitymatter-synthetic-data-generator.hf.space/" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} try: response = requests.post(API_URL, json={"prompt": prompt}, headers=headers) print("🔍 Raw API Response:", response.text) # Debugging line schema = response.json() # Validate required keys if 'columns' not in schema or 'types' not in schema or 'size' not in schema: raise ValueError("❌ Invalid schema format! Expected keys: 'columns', 'types', 'size'") print("✅ Valid Schema Received:", schema) # Debugging line return schema except json.JSONDecodeError: print("❌ Failed to parse JSON response. API might be down or returning non-JSON data.") return None except requests.exceptions.RequestException as e: print(f"❌ API request failed: {e}") return None def fetch_data(domain): """Fetches real data for the given domain and ensures it's a valid DataFrame.""" data_path = f"datasets/{domain}.csv" if os.path.exists(data_path): df = pd.read_csv(data_path) if not isinstance(df, pd.DataFrame) or df.empty: raise ValueError("❌ Loaded data is invalid!") return df else: raise FileNotFoundError(f"❌ Dataset for {domain} not found.")