Spaces:
Sleeping
Sleeping
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments | |
from datasets import load_dataset | |
import os | |
def fine_tune_gpt2(data_path, output_dir="model/fine_tuned"): | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
model = GPT2LMHeadModel.from_pretrained("gpt2") | |
# Carregar dados | |
dataset = load_dataset("text", data_files={"train": data_path}) | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128) | |
tokenized_dataset = dataset.map(tokenize_function, batched=True) | |
# Configurar treinamento | |
training_args = TrainingArguments( | |
output_dir=output_dir, | |
num_train_epochs=3, | |
per_device_train_batch_size=4, | |
save_steps=500, | |
save_total_limit=2, | |
logging_dir="logs", | |
logging_steps=100, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
) | |
trainer.train() | |
model.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) | |
print(f"Modelo salvo em {output_dir}") | |
if __name__ == "__main__": | |
fine_tune_gpt2("data/processed/train.txt") |