Spaces:
Sleeping
Sleeping
Update model/train.py
Browse files- model/train.py +40 -0
model/train.py
CHANGED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
import os
|
4 |
+
|
5 |
+
def fine_tune_gpt2(data_path, output_dir="model/fine_tuned"):
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
7 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
8 |
+
|
9 |
+
# Carregar dados
|
10 |
+
dataset = load_dataset("text", data_files={"train": data_path})
|
11 |
+
|
12 |
+
def tokenize_function(examples):
|
13 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
14 |
+
|
15 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
16 |
+
|
17 |
+
# Configurar treinamento
|
18 |
+
training_args = TrainingArguments(
|
19 |
+
output_dir=output_dir,
|
20 |
+
num_train_epochs=3,
|
21 |
+
per_device_train_batch_size=4,
|
22 |
+
save_steps=500,
|
23 |
+
save_total_limit=2,
|
24 |
+
logging_dir="logs",
|
25 |
+
logging_steps=100,
|
26 |
+
)
|
27 |
+
|
28 |
+
trainer = Trainer(
|
29 |
+
model=model,
|
30 |
+
args=training_args,
|
31 |
+
train_dataset=tokenized_dataset["train"],
|
32 |
+
)
|
33 |
+
|
34 |
+
trainer.train()
|
35 |
+
model.save_pretrained(output_dir)
|
36 |
+
tokenizer.save_pretrained(output_dir)
|
37 |
+
print(f"Modelo salvo em {output_dir}")
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
fine_tune_gpt2("data/processed/train.txt")
|