from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments from datasets import load_dataset import os def fine_tune_gpt2(data_path, output_dir="model/fine_tuned"): tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") # Carregar dados dataset = load_dataset("text", data_files={"train": data_path}) def tokenize_function(examples): return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128) tokenized_dataset = dataset.map(tokenize_function, batched=True) # Configurar treinamento training_args = TrainingArguments( output_dir=output_dir, num_train_epochs=3, per_device_train_batch_size=4, save_steps=500, save_total_limit=2, logging_dir="logs", logging_steps=100, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], ) trainer.train() model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) print(f"Modelo salvo em {output_dir}") if __name__ == "__main__": fine_tune_gpt2("data/processed/train.txt")