File size: 11,563 Bytes
863f08e
5f73f5c
863f08e
6f1c30f
f3f96df
 
 
 
 
8a52ce7
6f1c30f
 
 
8a52ce7
1f7518e
f3f96df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f7518e
 
 
 
f3f96df
8fc4412
8a52ce7
3374aef
1f7518e
 
8a52ce7
1f7518e
 
 
8a52ce7
1f7518e
 
8a52ce7
f3f96df
 
 
 
 
 
a677b1e
1f7518e
8eaa3ac
a677b1e
 
8a52ce7
1f7518e
8a52ce7
 
1f7518e
 
 
f3f96df
1f7518e
 
8a52ce7
 
 
 
 
 
 
 
c9f36bf
8a52ce7
c9f36bf
8a52ce7
 
c9f36bf
f3f96df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863f08e
 
90ad29a
863f08e
8a52ce7
 
 
 
 
 
 
 
bfe43da
f3f96df
 
 
 
 
 
 
bfe43da
8a52ce7
98378b3
8a52ce7
 
f3f96df
 
 
 
 
 
 
 
 
 
 
 
 
8a52ce7
f3f96df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5602a4
 
c202d23
f3f96df
 
 
 
8a52ce7
e61c05b
8a52ce7
 
e61c05b
 
 
 
 
 
f3f96df
 
 
 
 
dcd37d2
f3f96df
 
 
 
 
 
 
 
 
 
 
 
8a52ce7
 
 
c6ed7d9
 
 
 
 
 
 
 
 
 
863413c
c6ed7d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f96df
 
 
 
 
 
 
dcd37d2
f3f96df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863413c
c6ed7d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863413c
c6ed7d9
 
 
863f08e
c6ed7d9
 
 
 
 
 
 
 
 
f3f96df
 
 
 
 
 
 
c6ed7d9
 
 
863f08e
 
c6ed7d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import gradio as gr
import numpy as np
import torch
from diffusers.utils import load_image, make_image_grid
from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionControlNetPipeline,
    ControlNetModel
)
from peft import PeftModel, LoraConfig
from controlnet_aux import HEDdetector
from PIL import Image
import cv2 as cv
import os


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
IP_ADAPTER = 'h94/IP-Adapter'
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "CompVis/stable-diffusion-v1-4"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

hed = None
dict_controlnet = {
    "edge_detection": "lllyasviel/sd-controlnet-canny", 
    # "pose_estimation": "lllyasviel/sd-controlnet-openpose",
    # "depth_map": "lllyasviel/sd-controlnet-depth", 
    "scribble": "lllyasviel/sd-controlnet-scribble", 
    # "MLSD": "lllyasviel/sd-controlnet-mlsd"
}

controlnet = ControlNetModel.from_pretrained(
    dict_controlnet["edge_detection"],
    cache_dir="./models_cache",
    torch_dtype=torch_dtype,
)


def get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=None, 
    dtype=torch.float16, 
    adapter_name="default",
    controlnet=None
    ):

    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
    
    if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
        config = LoraConfig.from_pretrained(text_encoder_sub_dir)
        base_model_name_or_path = config.base_model_name_or_path
    
    if base_model_name_or_path is None:
        raise ValueError("Please specify the base model name or path")
    
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        base_model_name_or_path, 
        torch_dtype=dtype,
        controlnet=controlnet,
    )

    before_params = pipe.unet.parameters()
    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
    pipe.unet.set_adapter(adapter_name)
    after_params = pipe.unet.parameters()
    print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
    
    if os.path.exists(text_encoder_sub_dir):
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
    
    if dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()

    return pipe

def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
    tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
    chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
    
    with torch.no_grad():
        embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
    
    return torch.cat(embeds, dim=1)

def align_embeddings(prompt_embeds, negative_prompt_embeds):
    max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
    return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
           torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))

def map_edge_detection(image_path: str) -> Image:
    source_img = load_image(image_path).convert('RGB')
    edges = cv.Canny(np.array(source_img), 80, 160)
    edges = np.repeat(edges[:, :, None], 3, axis=2)
    final_image = Image.fromarray(edges)
    return final_image

def map_scribble(image_path: str) -> Image:
    global hed
    if not hed:
        hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
    
    image = load_image(image_path).convert('RGB')
    scribble_image = hed(image)
    image_np = np.array(scribble_image)
    image_np = cv.medianBlur(image_np, 3)
    image = cv.convertScaleAbs(image_np, alpha=1.5, beta=0)
    final_image = Image.fromarray(image)
    return final_image



pipe = get_lora_sd_pipeline(
    ckpt_dir='./lora_logos', 
    base_model_name_or_path=model_id_default, 
    dtype=torch_dtype,
    controlnet=controlnet
).to(device)



def infer(
    prompt, 
    negative_prompt, 
    width=512, 
    height=512, 
    num_inference_steps=20, 
    model_id='CompVis/stable-diffusion-v1-4', 
    seed=42, 
    guidance_scale=7.0, 
    lora_scale=0.5,
    cn_enable=False,
    cn_strength=0.0,
    cn_mode='edge_detection',
    cn_image=None,
    ip_enable=False,
    ip_scale=0.5,
    ip_image=None,
    progress=gr.Progress(track_tqdm=True)
    ):
    
    generator = torch.Generator(device).manual_seed(seed)
    
    global pipe
    global controlnet
    
    controlnet_changed = False

    if cn_enable:
        if dict_controlnet[cn_mode] != pipe.controlnet._name_or_path:
            controlnet = ControlNetModel.from_pretrained(
                dict_controlnet[cn_mode], 
                cache_dir="./models_cache", 
                torch_dtype=torch_dtype
            )
            controlnet_changed = True
    else:
        cn_strength = 0.0  # отключаем контролнет принудительно

    if model_id != pipe._name_or_path:
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            model_id, 
            torch_dtype=torch_dtype,
            controlnet=controlnet,
            controlnet_conditioning_scale=cn_strength,
        ).to(device)
    elif (model_id == pipe._name_or_path) and controlnet_changed:
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            model_id, 
            torch_dtype=torch_dtype,
            controlnet=controlnet,
            controlnet_conditioning_scale=cn_strength,
        ).to(device)
        print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
        print(f"LoRA scale applied: {lora_scale}")
        pipe.fuse_lora(lora_scale=lora_scale)
    elif (model_id == pipe._name_or_path) and not controlnet_changed:
        print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
        print(f"LoRA scale applied: {lora_scale}")
        pipe.fuse_lora(lora_scale=lora_scale)

    prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
    negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
    prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
    
    params = {
        'prompt_embeds': prompt_embeds,
        'negative_prompt_embeds': negative_prompt_embeds,
        'guidance_scale': guidance_scale,
        'num_inference_steps': num_inference_steps,
        'width': width,
        'height': height,
        'generator': generator,
    }

    if cn_enable:
        params['controlnet_conditioning_scale'] = cn_strength
        if cn_mode == 'edge_detection':
            control_image = map_edge_detection(cn_image)
            print(type(control_image))
        elif cn_mode == 'scribble':
            control_image = map_scribble(cn_image)
        params['control_image'] = control_image

    if ip_enable:
        pipe.load_ip_adapter(
            IP_ADAPTER,
            subfolder="models",
            weight_name=IP_ADAPTER_WEIGHT_NAME,
        )
        params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
        pipe.ip_scale(0.6)
    
    return pipe(**params).images[0]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # DEMO Text-to-Image")
        
        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
                value=model_id_default
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )

        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
        )

        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=10.0,
                step=0.1,
                value=7.0,
            )

        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.5,
            )

        with gr.Row():
            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=50,
                step=1,
                value=20,
            )

        # Секция Control Net
        cn_enable = gr.Checkbox(label="Enable ControlNet")    
        with gr.Column(visible=False) as cn_options:
            with gr.Row():
                cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
                cn_mode = gr.Dropdown(
                    choices=["edge_detection", "scribble"],
                    value="edge_detection",
                    label="Work regime",
                    interactive=True,
                )
            cn_image = gr.Image(type="filepath", label="Control image")

        cn_enable.change(
            lambda x: gr.update(visible=x),
            inputs=cn_enable,
            outputs=cn_options
        )
        
        # Секция IP-Adapter
        ip_enable = gr.Checkbox(label="Enable IP-Adapter")
        with gr.Column(visible=False) as ip_options:
            ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
            ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)

        ip_enable.change(
            lambda x: gr.update(visible=x),
            inputs=ip_enable,
            outputs=ip_options
        )

        with gr.Accordion("Optional Settings", open=False):
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

        run_button = gr.Button("Run", scale=1, variant="primary")
        result = gr.Image(label="Result", show_label=False)
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            num_inference_steps,
            model_id,
            seed,
            guidance_scale,
            lora_scale,
            cn_enable,
            cn_strength,
            cn_mode,
            cn_image,
            ip_enable,
            ip_scale,
            ip_image
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()