Spaces:
Running
Running
File size: 11,563 Bytes
863f08e 5f73f5c 863f08e 6f1c30f f3f96df 8a52ce7 6f1c30f 8a52ce7 1f7518e f3f96df 1f7518e f3f96df 8fc4412 8a52ce7 3374aef 1f7518e 8a52ce7 1f7518e 8a52ce7 1f7518e 8a52ce7 f3f96df a677b1e 1f7518e 8eaa3ac a677b1e 8a52ce7 1f7518e 8a52ce7 1f7518e f3f96df 1f7518e 8a52ce7 c9f36bf 8a52ce7 c9f36bf 8a52ce7 c9f36bf f3f96df 863f08e 90ad29a 863f08e 8a52ce7 bfe43da f3f96df bfe43da 8a52ce7 98378b3 8a52ce7 f3f96df 8a52ce7 f3f96df b5602a4 c202d23 f3f96df 8a52ce7 e61c05b 8a52ce7 e61c05b f3f96df dcd37d2 f3f96df 8a52ce7 c6ed7d9 863413c c6ed7d9 f3f96df dcd37d2 f3f96df 863413c c6ed7d9 863413c c6ed7d9 863f08e c6ed7d9 f3f96df c6ed7d9 863f08e c6ed7d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import gradio as gr
import numpy as np
import torch
from diffusers.utils import load_image, make_image_grid
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetPipeline,
ControlNetModel
)
from peft import PeftModel, LoraConfig
from controlnet_aux import HEDdetector
from PIL import Image
import cv2 as cv
import os
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
IP_ADAPTER = 'h94/IP-Adapter'
IP_ADAPTER_WEIGHT_NAME = "ip-adapter-plus_sd15.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id_default = "CompVis/stable-diffusion-v1-4"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
hed = None
dict_controlnet = {
"edge_detection": "lllyasviel/sd-controlnet-canny",
# "pose_estimation": "lllyasviel/sd-controlnet-openpose",
# "depth_map": "lllyasviel/sd-controlnet-depth",
"scribble": "lllyasviel/sd-controlnet-scribble",
# "MLSD": "lllyasviel/sd-controlnet-mlsd"
}
controlnet = ControlNetModel.from_pretrained(
dict_controlnet["edge_detection"],
cache_dir="./models_cache",
torch_dtype=torch_dtype,
)
def get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=None,
dtype=torch.float16,
adapter_name="default",
controlnet=None
):
unet_sub_dir = os.path.join(ckpt_dir, "unet")
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
base_model_name_or_path = config.base_model_name_or_path
if base_model_name_or_path is None:
raise ValueError("Please specify the base model name or path")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
base_model_name_or_path,
torch_dtype=dtype,
controlnet=controlnet,
)
before_params = pipe.unet.parameters()
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.unet.set_adapter(adapter_name)
after_params = pipe.unet.parameters()
print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
if os.path.exists(text_encoder_sub_dir):
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
if dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
return pipe
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
with torch.no_grad():
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
return torch.cat(embeds, dim=1)
def align_embeddings(prompt_embeds, negative_prompt_embeds):
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
def map_edge_detection(image_path: str) -> Image:
source_img = load_image(image_path).convert('RGB')
edges = cv.Canny(np.array(source_img), 80, 160)
edges = np.repeat(edges[:, :, None], 3, axis=2)
final_image = Image.fromarray(edges)
return final_image
def map_scribble(image_path: str) -> Image:
global hed
if not hed:
hed = HEDdetector.from_pretrained('lllyasviel/Annotators')
image = load_image(image_path).convert('RGB')
scribble_image = hed(image)
image_np = np.array(scribble_image)
image_np = cv.medianBlur(image_np, 3)
image = cv.convertScaleAbs(image_np, alpha=1.5, beta=0)
final_image = Image.fromarray(image)
return final_image
pipe = get_lora_sd_pipeline(
ckpt_dir='./lora_logos',
base_model_name_or_path=model_id_default,
dtype=torch_dtype,
controlnet=controlnet
).to(device)
def infer(
prompt,
negative_prompt,
width=512,
height=512,
num_inference_steps=20,
model_id='CompVis/stable-diffusion-v1-4',
seed=42,
guidance_scale=7.0,
lora_scale=0.5,
cn_enable=False,
cn_strength=0.0,
cn_mode='edge_detection',
cn_image=None,
ip_enable=False,
ip_scale=0.5,
ip_image=None,
progress=gr.Progress(track_tqdm=True)
):
generator = torch.Generator(device).manual_seed(seed)
global pipe
global controlnet
controlnet_changed = False
if cn_enable:
if dict_controlnet[cn_mode] != pipe.controlnet._name_or_path:
controlnet = ControlNetModel.from_pretrained(
dict_controlnet[cn_mode],
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
controlnet_changed = True
else:
cn_strength = 0.0 # отключаем контролнет принудительно
if model_id != pipe._name_or_path:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
controlnet=controlnet,
controlnet_conditioning_scale=cn_strength,
).to(device)
elif (model_id == pipe._name_or_path) and controlnet_changed:
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
controlnet=controlnet,
controlnet_conditioning_scale=cn_strength,
).to(device)
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
print(f"LoRA scale applied: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
elif (model_id == pipe._name_or_path) and not controlnet_changed:
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
print(f"LoRA scale applied: {lora_scale}")
pipe.fuse_lora(lora_scale=lora_scale)
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
params = {
'prompt_embeds': prompt_embeds,
'negative_prompt_embeds': negative_prompt_embeds,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
if cn_enable:
params['controlnet_conditioning_scale'] = cn_strength
if cn_mode == 'edge_detection':
control_image = map_edge_detection(cn_image)
print(type(control_image))
elif cn_mode == 'scribble':
control_image = map_scribble(cn_image)
params['control_image'] = control_image
if ip_enable:
pipe.load_ip_adapter(
IP_ADAPTER,
subfolder="models",
weight_name=IP_ADAPTER_WEIGHT_NAME,
)
params['ip_adapter_image'] = load_image(ip_image).convert('RGB')
pipe.ip_scale(0.6)
return pipe(**params).images[0]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # DEMO Text-to-Image")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id like 'CompVis/stable-diffusion-v1-4'",
value=model_id_default
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0,
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
# Секция Control Net
cn_enable = gr.Checkbox(label="Enable ControlNet")
with gr.Column(visible=False) as cn_options:
with gr.Row():
cn_strength = gr.Slider(0, 2, value=0.8, step=0.1, label="Control strength", interactive=True)
cn_mode = gr.Dropdown(
choices=["edge_detection", "scribble"],
value="edge_detection",
label="Work regime",
interactive=True,
)
cn_image = gr.Image(type="filepath", label="Control image")
cn_enable.change(
lambda x: gr.update(visible=x),
inputs=cn_enable,
outputs=cn_options
)
# Секция IP-Adapter
ip_enable = gr.Checkbox(label="Enable IP-Adapter")
with gr.Column(visible=False) as ip_options:
ip_scale = gr.Slider(0, 1, value=0.5, step=0.1, label="IP-adapter scale", interactive=True)
ip_image = gr.Image(type="filepath", label="IP-adapter image", interactive=True)
ip_enable.change(
lambda x: gr.update(visible=x),
inputs=ip_enable,
outputs=ip_options
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
run_button = gr.Button("Run", scale=1, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
num_inference_steps,
model_id,
seed,
guidance_scale,
lora_scale,
cn_enable,
cn_strength,
cn_mode,
cn_image,
ip_enable,
ip_scale,
ip_image
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |