dezzman commited on
Commit
c9f36bf
·
verified ·
1 Parent(s): 3ca8699

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -4
app.py CHANGED
@@ -27,6 +27,9 @@ def get_lora_sd_pipeline(
27
 
28
  pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
29
  pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
 
 
 
30
 
31
  if os.path.exists(text_encoder_sub_dir):
32
  pipe.text_encoder = PeftModel.from_pretrained(
@@ -36,9 +39,52 @@ def get_lora_sd_pipeline(
36
  if dtype in (torch.float16, torch.bfloat16):
37
  pipe.unet.half()
38
  pipe.text_encoder.half()
39
-
40
  return pipe
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  device = "cuda" if torch.cuda.is_available() else "cpu"
43
  model_id_default = "CompVis/stable-diffusion-v1-4"
44
 
@@ -76,8 +122,8 @@ def infer(
76
  generator = torch.Generator().manual_seed(seed)
77
 
78
  params = {
79
- 'prompt': prompt,
80
- 'negative_prompt': negative_prompt,
81
  'guidance_scale': guidance_scale,
82
  'num_inference_steps': num_inference_steps,
83
  'width': width,
@@ -88,9 +134,20 @@ def infer(
88
  if model_id != model_id_default:
89
  pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
90
  pipe = pipe.to(device)
91
- pipe.fuse_lora(lora_scale=lora_scale)
92
  image = pipe(**params).images[0]
93
  else:
 
 
 
 
 
 
 
 
 
 
 
 
94
  pipe_default.fuse_lora(lora_scale=lora_scale)
95
  image = pipe_default(**params).images[0]
96
 
 
27
 
28
  pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
29
  pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
30
+ print(os.path.exists(unet_sub_dir))
31
+ print(unet_sub_dir)
32
+ print(dtype)
33
 
34
  if os.path.exists(text_encoder_sub_dir):
35
  pipe.text_encoder = PeftModel.from_pretrained(
 
39
  if dtype in (torch.float16, torch.bfloat16):
40
  pipe.unet.half()
41
  pipe.text_encoder.half()
 
42
  return pipe
43
 
44
+ def split_prompt(prompt, tokenizer, max_length=77):
45
+ tokens = tokenizer(prompt, truncation=False)["input_ids"]
46
+ chunks = [tokens[i:i + max_length] for i in range(0, len(tokens), max_length)]
47
+ return chunks
48
+
49
+ def get_prompt_embeds(prompt_chunks, text_encoder):
50
+ prompt_embeds = []
51
+ for chunk in prompt_chunks:
52
+ chunk_tensor = torch.tensor([chunk]).to(text_encoder.device)
53
+ with torch.no_grad():
54
+ embeds = text_encoder(chunk_tensor)[0]
55
+ prompt_embeds.append(embeds)
56
+ return torch.cat(prompt_embeds, dim=1)
57
+
58
+ def shape_alignment(prompt_embeds, negative_prompt_embeds):
59
+ max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
60
+
61
+ def pad_to_max_length(tensor, target_length):
62
+ padding = target_length - tensor.shape[1]
63
+ if padding > 0:
64
+ pad_tensor = torch.zeros(
65
+ tensor.shape[0], padding, tensor.shape[2], device=tensor.device
66
+ )
67
+ tensor = torch.cat([tensor, pad_tensor], dim=1)
68
+ return tensor
69
+
70
+ prompt_embeds = pad_to_max_length(prompt_embeds, max_length)
71
+ negative_prompt_embeds = pad_to_max_length(negative_prompt_embeds, max_length)
72
+
73
+ assert prompt_embeds.shape == negative_prompt_embeds.shape, "Shapes do not match!"
74
+ return prompt_embeds, negative_prompt_embeds
75
+
76
+ def prompts_embeddings(prompt, negative_promt, tokenizer, text_encoder):
77
+ prompt_chunks = split_prompt(prompt, tokenizer)
78
+ negative_prompt_chunks = split_prompt(negative_prompt, tokenizer)
79
+
80
+ prompt_embeds = get_prompt_embeds(prompt_chunks, text_encoder)
81
+ negative_prompt_embeds = get_prompt_embeds(negative_prompt_chunks, text_encoder)
82
+
83
+ prompt_embeds, negative_prompt_embeds = shape_alignment(prompt_embeds, negative_prompt_embeds)
84
+
85
+ return prompt_embeds, negative_prompt_embeds
86
+
87
+
88
  device = "cuda" if torch.cuda.is_available() else "cpu"
89
  model_id_default = "CompVis/stable-diffusion-v1-4"
90
 
 
122
  generator = torch.Generator().manual_seed(seed)
123
 
124
  params = {
125
+ # 'prompt': prompt,
126
+ # 'negative_prompt': negative_prompt,
127
  'guidance_scale': guidance_scale,
128
  'num_inference_steps': num_inference_steps,
129
  'width': width,
 
134
  if model_id != model_id_default:
135
  pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
136
  pipe = pipe.to(device)
 
137
  image = pipe(**params).images[0]
138
  else:
139
+ print('----')
140
+ print(lora_scale)
141
+ print(prompt)
142
+ print(negative_prompt)
143
+ prompt_embeds, negative_prompt_embeds = prompts_embeddings(
144
+ prompt,
145
+ negative_prompt,
146
+ pipe_default.tokenizer,
147
+ pipe_default.text_encoder
148
+ )
149
+ params['prompt_embeds'] = prompt_embeds
150
+ params['negative_prompt_embeds']=negative_prompt_embeds
151
  pipe_default.fuse_lora(lora_scale=lora_scale)
152
  image = pipe_default(**params).images[0]
153