Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
|
5 |
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
|
|
7 |
import torch
|
8 |
from typing import Optional
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
model_id_default = "CompVis/stable-diffusion-v1-4"
|
12 |
|
@@ -15,7 +47,13 @@ if torch.cuda.is_available():
|
|
15 |
else:
|
16 |
torch_dtype = torch.float32
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
pipe_default = pipe_default.to(device)
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -32,6 +70,7 @@ def infer(
|
|
32 |
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
|
33 |
seed: Optional[int] = 42,
|
34 |
guidance_scale: Optional[float] = 7.0,
|
|
|
35 |
progress=gr.Progress(track_tqdm=True),
|
36 |
):
|
37 |
generator = torch.Generator().manual_seed(seed)
|
@@ -49,8 +88,10 @@ def infer(
|
|
49 |
if model_id != model_id_default:
|
50 |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
51 |
pipe = pipe.to(device)
|
|
|
52 |
image = pipe(**params).images[0]
|
53 |
else:
|
|
|
54 |
image = pipe_default(**params).images[0]
|
55 |
|
56 |
return image
|
@@ -105,6 +146,15 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
value=7.0,
|
106 |
)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
with gr.Row():
|
109 |
num_inference_steps = gr.Slider(
|
110 |
label="Number of inference steps",
|
@@ -148,6 +198,7 @@ with gr.Blocks(css=css) as demo:
|
|
148 |
model_id,
|
149 |
seed,
|
150 |
guidance_scale,
|
|
|
151 |
],
|
152 |
outputs=[result],
|
153 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import os
|
5 |
|
6 |
# import spaces #[uncomment to use ZeroGPU]
|
7 |
+
from diffusers import DiffusionPipeline, StableDiffusionPipeline
|
8 |
+
from peft import PeftModel, LoraConfig
|
9 |
import torch
|
10 |
from typing import Optional
|
11 |
|
12 |
+
|
13 |
+
def get_lora_sd_pipeline(
|
14 |
+
ckpt_dir='./lora_logos',
|
15 |
+
base_model_name_or_path=None,
|
16 |
+
dtype=torch.float16,
|
17 |
+
adapter_name="default"
|
18 |
+
):
|
19 |
+
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
20 |
+
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
21 |
+
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
|
22 |
+
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
|
23 |
+
base_model_name_or_path = config.base_model_name_or_path
|
24 |
+
|
25 |
+
if base_model_name_or_path is None:
|
26 |
+
raise ValueError("Please specify the base model name or path")
|
27 |
+
|
28 |
+
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device)
|
29 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
30 |
+
|
31 |
+
if os.path.exists(text_encoder_sub_dir):
|
32 |
+
pipe.text_encoder = PeftModel.from_pretrained(
|
33 |
+
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
|
34 |
+
)
|
35 |
+
|
36 |
+
if dtype in (torch.float16, torch.bfloat16):
|
37 |
+
pipe.unet.half()
|
38 |
+
pipe.text_encoder.half()
|
39 |
+
|
40 |
+
return pipe
|
41 |
+
|
42 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
model_id_default = "CompVis/stable-diffusion-v1-4"
|
44 |
|
|
|
47 |
else:
|
48 |
torch_dtype = torch.float32
|
49 |
|
50 |
+
|
51 |
+
pipe_default = get_lora_sd_pipeline(
|
52 |
+
ckpt_dir='./lora_logos',
|
53 |
+
base_model_name_or_path=model_id_default,
|
54 |
+
dtype=torch_dtype,
|
55 |
+
)
|
56 |
+
# pipe_default = DiffusionPipeline.from_pretrained(model_id_default, torch_dtype=torch_dtype)
|
57 |
pipe_default = pipe_default.to(device)
|
58 |
|
59 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
70 |
model_id: Optional[str] = 'CompVis/stable-diffusion-v1-4',
|
71 |
seed: Optional[int] = 42,
|
72 |
guidance_scale: Optional[float] = 7.0,
|
73 |
+
lora_scale: Optional[float] = 0.5,
|
74 |
progress=gr.Progress(track_tqdm=True),
|
75 |
):
|
76 |
generator = torch.Generator().manual_seed(seed)
|
|
|
88 |
if model_id != model_id_default:
|
89 |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
90 |
pipe = pipe.to(device)
|
91 |
+
pipe.fuse_lora(lora_scale=0.4)
|
92 |
image = pipe(**params).images[0]
|
93 |
else:
|
94 |
+
pipe_default.fuse_lora(lora_scale=0.4)
|
95 |
image = pipe_default(**params).images[0]
|
96 |
|
97 |
return image
|
|
|
146 |
value=7.0,
|
147 |
)
|
148 |
|
149 |
+
with gr.Row():
|
150 |
+
lora_scale = gr.Slider(
|
151 |
+
label="LoRA scale",
|
152 |
+
minimum=0.0,
|
153 |
+
maximum=1.0,
|
154 |
+
step=0.1,
|
155 |
+
value=0.5,
|
156 |
+
)
|
157 |
+
|
158 |
with gr.Row():
|
159 |
num_inference_steps = gr.Slider(
|
160 |
label="Number of inference steps",
|
|
|
198 |
model_id,
|
199 |
seed,
|
200 |
guidance_scale,
|
201 |
+
lora_scale,
|
202 |
],
|
203 |
outputs=[result],
|
204 |
)
|