44444 / app.py
1
Update app.py
7b7e62e
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
import base64
import io
from pathlib import Path
import gradio as gr
import torch
import spaces
from PIL import Image as PILImage
from fastapi import FastAPI, Body
from fastapi.middleware.cors import CORSMiddleware
from uno.flux.pipeline import UNOPipeline
# 创建FastAPI应用
app = FastAPI()
# 添加CORS中间件允许跨域请求
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 设置全局pipeline变量
pipeline = None
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir():
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = []
example_list.append(example_dict["useage"]) # case for
example_list.append(example_dict["prompt"]) # prompt
for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]:
if key in example_dict:
example_list.append(str(example / example_dict[key]))
else:
example_list.append(None)
example_list.append(example_dict["seed"])
ans.append(example_list)
return ans
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
):
global pipeline
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)
# 自定义CSS样式
css = """
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
background: linear-gradient(to right, #4776E6, #8E54E9);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 700;
padding: 1rem 0;
}
.container {
border-radius: 12px;
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
padding: 20px;
background: white;
margin-bottom: 1.5rem;
}
.input-container {
background: rgba(245, 247, 250, 0.7);
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
}
.image-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
gap: 10px;
}
.generate-btn {
background: linear-gradient(90deg, #4776E6, #8E54E9);
border: none;
color: white;
padding: 10px 20px;
border-radius: 50px;
font-weight: 600;
box-shadow: 0 4px 10px rgba(0,0,0,0.1);
transition: all 0.3s ease;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 6px 15px rgba(0,0,0,0.15);
}
.badge-container {
display: flex;
justify-content: center;
align-items: center;
gap: 8px;
flex-wrap: wrap;
margin-bottom: 1rem;
}
.badge {
display: inline-block;
padding: 0.25rem 0.75rem;
font-size: 0.875rem;
font-weight: 500;
line-height: 1.5;
text-align: center;
white-space: nowrap;
vertical-align: middle;
border-radius: 30px;
color: white;
background: #6c5ce7;
text-decoration: none;
}
.output-container {
background: rgba(243, 244, 246, 0.7);
border-radius: 10px;
padding: 1.5rem;
}
.slider-container label {
font-weight: 600;
margin-bottom: 0.5rem;
color: #4a5568;
}
"""
badges_text = r"""
<div class="badge-container">
<a href="https://github.com/bytedance/UNO" class="badge" style="background: #24292e;"><img alt="GitHub Stars" src="https://img.shields.io/github/stars/bytedance/UNO" style="vertical-align: middle;"></a>
<a href="https://bytedance.github.io/UNO/" class="badge" style="background: #f1c40f; color: #333;"><img alt="Project Page" src="https://img.shields.io/badge/Project%20Page-UNO-yellow" style="vertical-align: middle;"></a>
<a href="https://arxiv.org/abs/2504.02160" class="badge" style="background: #b31b1b;"><img alt="arXiv" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg" style="vertical-align: middle;"></a>
<a href="https://huggingface.co./bytedance-research/UNO" class="badge" style="background: #FF9D00;"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange" style="vertical-align: middle;"></a>
<a href="https://huggingface.co./spaces/bytedance-research/UNO-FLUX" class="badge" style="background: #FF9D00;"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=demo&color=orange" style="vertical-align: middle;"></a>
</div>
""".strip()
with gr.Blocks(css=css) as demo:
gr.Markdown("# <div class='main-header'>UNO-FLUX Image Generator</div>")
gr.Markdown(badges_text)
with gr.Row():
with gr.Column(scale=3):
with gr.Group(elem_classes="container"):
prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate...",
value="handsome woman in the city",
elem_classes="input-container"
)
gr.Markdown("### Reference Images")
with gr.Row(elem_classes="image-grid"):
image_prompt1 = gr.Image(label="Ref Img 1", visible=True, interactive=True, type="pil")
image_prompt2 = gr.Image(label="Ref Img 2", visible=True, interactive=True, type="pil")
image_prompt3 = gr.Image(label="Ref Img 3", visible=True, interactive=True, type="pil")
image_prompt4 = gr.Image(label="Ref Img 4", visible=True, interactive=True, type="pil")
with gr.Row():
with gr.Column(scale=2):
with gr.Group(elem_classes="slider-container"):
width = gr.Slider(512, 2048, 512, step=16, label="Generation Width")
height = gr.Slider(512, 2048, 512, step=16, label="Generation Height")
with gr.Column(scale=1):
gr.Markdown("<div style='background: #f8f9fa; padding: 10px; border-radius: 8px; border-left: 4px solid #4776E6;'>📌 The model was trained on 512x512 resolution.<br>Sizes closer to 512 are more stable, higher sizes give better visual effects but are less stable.</div>")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
with gr.Column():
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
with gr.Column():
seed = gr.Number(-1, label="Seed (-1 for random)")
generate_btn = gr.Button("Generate", elem_classes="generate-btn")
with gr.Column(scale=2):
with gr.Group(elem_classes="output-container"):
gr.Markdown("### Generated Result")
output_image = gr.Image(label="Generated Image")
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
inputs = [
prompt, width, height, guidance, num_steps,
seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
]
generate_btn.click(
fn=pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
example_text = gr.Text("", visible=False, label="Case For:")
examples = get_examples("./assets/examples")
with gr.Group(elem_classes="container"):
gr.Markdown("### <div style='text-align: center; margin-bottom: 1rem;'>Examples</div>")
gr.Examples(
examples=examples,
inputs=[
example_text, prompt,
image_prompt1, image_prompt2, image_prompt3, image_prompt4,
seed, output_image
],
)
# 添加API文档
with gr.Accordion("API Documentation", open=False):
gr.Markdown("""
### API Usage
You can use the following endpoint to generate images programmatically:
**Endpoint:** `/api/generate`
**Method:** POST
**Request Body:**
```json
{
"prompt": "your text prompt",
"image_refs": ["base64_encoded_image1", "base64_encoded_image2", ...],
"width": 512,
"height": 512,
"guidance": 4.0,
"num_steps": 25,
"seed": -1
}
```
**Response:**
```json
{
"image": "base64_encoded_generated_image"
}
```
**Example JavaScript Usage:**
```javascript
async function generateImage() {
const response = await fetch('/api/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({
prompt: "handsome woman in the city",
image_refs: [],
width: 512,
height: 512
}),
});
const data = await response.json();
const imgElement = document.getElementById('generatedImage');
imgElement.src = `data:image/png;base64,${data.image}`;
}
```
""")
return demo
# 创建API端点
@app.post("/api/generate")
async def generate_image(
prompt: str = Body(...),
width: int = Body(512),
height: int = Body(512),
guidance: float = Body(4.0),
num_steps: int = Body(25),
seed: int = Body(-1),
image_refs: list = Body([])
):
global pipeline
# 处理参考图像
ref_images = []
for i in range(min(4, len(image_refs))):
if image_refs[i]:
try:
# 解码base64图像
if isinstance(image_refs[i], str) and "base64" in image_refs[i]:
# 移除数据URL前缀
if "," in image_refs[i]:
img_data = image_refs[i].split(",")[1]
else:
img_data = image_refs[i]
img_data = base64.b64decode(img_data)
ref_img = PILImage.open(io.BytesIO(img_data))
ref_images.append(ref_img)
else:
ref_images.append(None)
except:
ref_images.append(None)
else:
ref_images.append(None)
# 填充至4张图像
while len(ref_images) < 4:
ref_images.append(None)
# 调用模型生成图像
result_image, _ = pipeline.gradio_generate(
prompt, width, height, guidance, num_steps, seed,
ref_images[0], ref_images[1], ref_images[2], ref_images[3]
)
# 将结果图像编码为base64
buffered = io.BytesIO()
result_image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return {"image": img_str}
if __name__ == "__main__":
from typing import Literal
import uvicorn
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
offload: bool = dataclasses.field(
default=False,
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
)
port: int = 7860
host: str = "0.0.0.0"
parser = HfArgumentParser([AppArgs])
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
args = args_tuple[0]
# 创建Gradio demo
demo = create_demo(args.name, args.device, args.offload)
# 挂载Gradio接口到FastAPI应用
app = gr.mount_gradio_app(app, demo, path="/")
# 使用uvicorn启动FastAPI应用
uvicorn.run(app, host=args.host, port=args.port)