File size: 13,975 Bytes
def2fd8
 
 
 
 
 
 
 
 
 
 
 
 
3408cd5
 
9d31e57
7b7e62e
 
9d31e57
3408cd5
def2fd8
 
3994a93
7b7e62e
 
 
def2fd8
 
 
7b7e62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d31e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def2fd8
3408cd5
 
 
 
 
7b7e62e
3408cd5
 
def2fd8
25e816c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c62efeb
 
25e816c
 
 
 
 
 
c62efeb
 
 
25e816c
 
c62efeb
25e816c
3408cd5
25e816c
65dcc19
25e816c
 
 
 
 
 
 
 
 
 
 
 
 
3408cd5
25e816c
 
65dcc19
25e816c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65dcc19
25e816c
 
 
3408cd5
 
 
 
c62efeb
3408cd5
 
 
 
 
 
9d31e57
 
 
 
65dcc19
25e816c
 
 
 
 
 
 
 
 
9d31e57
7b7e62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408cd5
 
7b7e62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408cd5
 
7b7e62e
3408cd5
 
 
 
 
 
 
 
 
def2fd8
3408cd5
7b7e62e
3408cd5
 
7b7e62e
3408cd5
7b7e62e
 
3408cd5
7b7e62e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import dataclasses
import json
import base64
import io
from pathlib import Path

import gradio as gr
import torch
import spaces
from PIL import Image as PILImage
from fastapi import FastAPI, Body
from fastapi.middleware.cors import CORSMiddleware

from uno.flux.pipeline import UNOPipeline

# 创建FastAPI应用
app = FastAPI()

# 添加CORS中间件允许跨域请求
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# 设置全局pipeline变量
pipeline = None

def get_examples(examples_dir: str = "assets/examples") -> list:
    examples = Path(examples_dir)
    ans = []
    for example in examples.iterdir():
        if not example.is_dir():
            continue
        with open(example / "config.json") as f:
            example_dict = json.load(f)
  
        
        example_list = []

        example_list.append(example_dict["useage"])  # case for
        example_list.append(example_dict["prompt"])  # prompt

        for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]:
            if key in example_dict:
                example_list.append(str(example / example_dict[key]))
            else:
                example_list.append(None)

        example_list.append(example_dict["seed"])

        ans.append(example_list)
    return ans


def create_demo(
    model_type: str,
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    offload: bool = False,
):
    global pipeline
    pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
    pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)

    # 自定义CSS样式
    css = """
    .gradio-container {
        font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
    }
    
    .main-header {
        text-align: center;
        margin-bottom: 2rem;
        background: linear-gradient(to right, #4776E6, #8E54E9);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        font-weight: 700;
        padding: 1rem 0;
    }
    
    .container {
        border-radius: 12px;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
        padding: 20px;
        background: white;
        margin-bottom: 1.5rem;
    }
    
    .input-container {
        background: rgba(245, 247, 250, 0.7);
        border-radius: 10px;
        padding: 1rem;
        margin-bottom: 1rem;
    }
    
    .image-grid {
        display: grid;
        grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
        gap: 10px;
    }
    
    .generate-btn {
        background: linear-gradient(90deg, #4776E6, #8E54E9);
        border: none;
        color: white;
        padding: 10px 20px;
        border-radius: 50px;
        font-weight: 600;
        box-shadow: 0 4px 10px rgba(0,0,0,0.1);
        transition: all 0.3s ease;
    }
    
    .generate-btn:hover {
        transform: translateY(-2px);
        box-shadow: 0 6px 15px rgba(0,0,0,0.15);
    }
    
    .badge-container {
        display: flex;
        justify-content: center;
        align-items: center;
        gap: 8px;
        flex-wrap: wrap;
        margin-bottom: 1rem;
    }
    
    .badge {
        display: inline-block;
        padding: 0.25rem 0.75rem;
        font-size: 0.875rem;
        font-weight: 500;
        line-height: 1.5;
        text-align: center;
        white-space: nowrap;
        vertical-align: middle;
        border-radius: 30px;
        color: white;
        background: #6c5ce7;
        text-decoration: none;
    }
    
    .output-container {
        background: rgba(243, 244, 246, 0.7);
        border-radius: 10px;
        padding: 1.5rem;
    }
    
    .slider-container label {
        font-weight: 600;
        margin-bottom: 0.5rem;
        color: #4a5568;
    }
    """

    badges_text = r"""
    <div class="badge-container">
    <a href="https://github.com/bytedance/UNO" class="badge" style="background: #24292e;"><img alt="GitHub Stars" src="https://img.shields.io/github/stars/bytedance/UNO" style="vertical-align: middle;"></a> 
    <a href="https://bytedance.github.io/UNO/" class="badge" style="background: #f1c40f; color: #333;"><img alt="Project Page" src="https://img.shields.io/badge/Project%20Page-UNO-yellow" style="vertical-align: middle;"></a> 
    <a href="https://arxiv.org/abs/2504.02160" class="badge" style="background: #b31b1b;"><img alt="arXiv" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg" style="vertical-align: middle;"></a>
    <a href="https://huggingface.co./bytedance-research/UNO" class="badge" style="background: #FF9D00;"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange" style="vertical-align: middle;"></a>
    <a href="https://huggingface.co./spaces/bytedance-research/UNO-FLUX" class="badge" style="background: #FF9D00;"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=demo&color=orange" style="vertical-align: middle;"></a>
    </div>
    """.strip()

    with gr.Blocks(css=css) as demo:
        gr.Markdown("# <div class='main-header'>UNO-FLUX Image Generator</div>")
        gr.Markdown(badges_text)
        
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Group(elem_classes="container"):
                    prompt = gr.Textbox(
                        label="Prompt",
                        placeholder="Describe the image you want to generate...",
                        value="handsome woman in the city",
                        elem_classes="input-container"
                    )
                    
                    gr.Markdown("### Reference Images")
                    with gr.Row(elem_classes="image-grid"):
                        image_prompt1 = gr.Image(label="Ref Img 1", visible=True, interactive=True, type="pil")
                        image_prompt2 = gr.Image(label="Ref Img 2", visible=True, interactive=True, type="pil")
                        image_prompt3 = gr.Image(label="Ref Img 3", visible=True, interactive=True, type="pil")
                        image_prompt4 = gr.Image(label="Ref Img 4", visible=True, interactive=True, type="pil")

                    with gr.Row():
                        with gr.Column(scale=2):
                            with gr.Group(elem_classes="slider-container"):
                                width = gr.Slider(512, 2048, 512, step=16, label="Generation Width")
                                height = gr.Slider(512, 2048, 512, step=16, label="Generation Height")
                        
                        with gr.Column(scale=1):
                            gr.Markdown("<div style='background: #f8f9fa; padding: 10px; border-radius: 8px; border-left: 4px solid #4776E6;'>📌 The model was trained on 512x512 resolution.<br>Sizes closer to 512 are more stable, higher sizes give better visual effects but are less stable.</div>")

                    with gr.Accordion("Advanced Options", open=False):
                        with gr.Row():
                            with gr.Column():
                                num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                            with gr.Column():
                                guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
                            with gr.Column():
                                seed = gr.Number(-1, label="Seed (-1 for random)")

                    generate_btn = gr.Button("Generate", elem_classes="generate-btn")

            with gr.Column(scale=2):
                with gr.Group(elem_classes="output-container"):
                    gr.Markdown("### Generated Result")
                    output_image = gr.Image(label="Generated Image")
                    download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)


            inputs = [
                prompt, width, height, guidance, num_steps,
                seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
            ]
            generate_btn.click(
                fn=pipeline.gradio_generate,
                inputs=inputs,
                outputs=[output_image, download_btn],
            )
        
        example_text = gr.Text("", visible=False, label="Case For:")
        examples = get_examples("./assets/examples")

        with gr.Group(elem_classes="container"):
            gr.Markdown("### <div style='text-align: center; margin-bottom: 1rem;'>Examples</div>")
            gr.Examples(
                examples=examples,
                inputs=[
                    example_text, prompt,
                    image_prompt1, image_prompt2, image_prompt3, image_prompt4,
                    seed, output_image
                ],
            )

        # 添加API文档
        with gr.Accordion("API Documentation", open=False):
            gr.Markdown("""
            ### API Usage
            
            You can use the following endpoint to generate images programmatically:
            
            **Endpoint:** `/api/generate`
            
            **Method:** POST
            
            **Request Body:**
            ```json
            {
                "prompt": "your text prompt",
                "image_refs": ["base64_encoded_image1", "base64_encoded_image2", ...],
                "width": 512,
                "height": 512,
                "guidance": 4.0,
                "num_steps": 25,
                "seed": -1
            }
            ```
            
            **Response:**
            ```json
            {
                "image": "base64_encoded_generated_image"
            }
            ```
            
            **Example JavaScript Usage:**
            ```javascript
            async function generateImage() {
                const response = await fetch('/api/generate', {
                    method: 'POST',
                    headers: {
                        'Content-Type': 'application/json',
                    },
                    body: JSON.stringify({
                        prompt: "handsome woman in the city",
                        image_refs: [],
                        width: 512,
                        height: 512
                    }),
                });
                
                const data = await response.json();
                const imgElement = document.getElementById('generatedImage');
                imgElement.src = `data:image/png;base64,${data.image}`;
            }
            ```
            """)

    return demo

# 创建API端点
@app.post("/api/generate")
async def generate_image(
    prompt: str = Body(...),
    width: int = Body(512),
    height: int = Body(512),
    guidance: float = Body(4.0),
    num_steps: int = Body(25),
    seed: int = Body(-1),
    image_refs: list = Body([])
):
    global pipeline
    # 处理参考图像
    ref_images = []
    for i in range(min(4, len(image_refs))):
        if image_refs[i]:
            try:
                # 解码base64图像
                if isinstance(image_refs[i], str) and "base64" in image_refs[i]:
                    # 移除数据URL前缀
                    if "," in image_refs[i]:
                        img_data = image_refs[i].split(",")[1]
                    else:
                        img_data = image_refs[i]
                    
                    img_data = base64.b64decode(img_data)
                    ref_img = PILImage.open(io.BytesIO(img_data))
                    ref_images.append(ref_img)
                else:
                    ref_images.append(None)
            except:
                ref_images.append(None)
        else:
            ref_images.append(None)
    
    # 填充至4张图像
    while len(ref_images) < 4:
        ref_images.append(None)
    
    # 调用模型生成图像
    result_image, _ = pipeline.gradio_generate(
        prompt, width, height, guidance, num_steps, seed,
        ref_images[0], ref_images[1], ref_images[2], ref_images[3]
    )
    
    # 将结果图像编码为base64
    buffered = io.BytesIO()
    result_image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    
    return {"image": img_str}

if __name__ == "__main__":
    from typing import Literal
    import uvicorn
    from transformers import HfArgumentParser

    @dataclasses.dataclass
    class AppArgs:
        name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
        device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
        offload: bool = dataclasses.field(
            default=False,
            metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
        )
        port: int = 7860
        host: str = "0.0.0.0"

    parser = HfArgumentParser([AppArgs])
    args_tuple = parser.parse_args_into_dataclasses()  # type: tuple[AppArgs]
    args = args_tuple[0]
    
    # 创建Gradio demo
    demo = create_demo(args.name, args.device, args.offload)
    
    # 挂载Gradio接口到FastAPI应用
    app = gr.mount_gradio_app(app, demo, path="/")
    
    # 使用uvicorn启动FastAPI应用
    uvicorn.run(app, host=args.host, port=args.port)